第1个回答 2016-10-15
解:
考察一般项:k(2k-1)=2k²-k
1×2+2×3+3×5+...+49×97+50×99
=2×(1²+2²+3²+...+50²)-(1+2+3+...+50)
=2×50×(50+1)×(2×50+1)/6 -50×(50+1)/2
=84575
一般的:
1×2+2×3+...+n(2n-1)
=2×(1²+2²+...+n²)-(1+2+...+n)
=2n(n+1)(2n+1)/6 -n(n+1)/2
=[n(n+1)/6][2(2n+1)-3]
=[n(n+1)/6](4n-1)
=n(n+1)(4n-1)/6本回答被网友采纳