网络分析的稳态分析

如题所述

第1个回答  2016-05-27

激励为正弦信号是一种常见而且重要的情况,求解其稳态响应的方法是相量法(又称符号法)。这时的激励和响应都是同频率的正弦函数,都可用只包含其幅度和初相的相量来表示。例如:用电压相量表示,用电流相量表示。采用相量法可以把微积分方程变换成代数方程,把网络元件的电流电压关系用阻抗或导纳来表示。根据所求响应的不同,有多种分析方法,它们都是在KVL、KCL和VCR基础上导出其相应的网络方程。对于简单的网络,可用观察法列出网络方程,并可利用网络定理以及等效变换等来简化求解过程。对于复杂的网络,则往往需借助于网络图论和矩阵等方法来系统地列出其网络方程,并用计算机求解。常用的有下面的6种方法。
2.1节点电压法
以网络中每个节点对某一参考节点间的电压作待求量,这种网络方程叫节点方程,其矩阵式为:

式中Un为待求的各节点电压的矢量;Ig为各节点上的电流激励源矢量为节点导纳矩阵。
2.2回路电流法
是以每个独立回路中流动的假想电流为待求量,这时的网络方程叫回路方程,其矩阵式为:

式中Im为待求的回路电流的矢量;Ug为各回路的电压激励源矢量;Zm为回路阻抗矩阵。
2.3端口分析法
有时并不要求求出网络中各处的电流和电压,而只是关心该网络与外部连接的那些端子上的电流电压,这时可把该网络作为多端网络来处理,最常见的是双口网络,联系这些端口上电流电压的方程组一般较小,比较容易求解(双口网络只需两个方程)。
2.4网络函数法
当网络中只有一个激励源(设其相量为x)并且只求一个响应(设其相量为可导出联系这两个量的网络方程为:

式中H(jω)称网络函数,一般是频率ω的函数,其量纲可以是阻抗、导纳,或无量纲的电流比、电压比,视工和7的量纲而定。一旦知道了H(jω),就可由给定的x求出响应y,且便于考查其频率特性。
2.5不定导纳矩阵法
以网络外接端子对网络外部某参考点的电压为待求量,其网络方程的矩阵式为:

式中U是各个外接端子对参考点电压的矢量;I是各端子电流的矢量;Yind是方程的系数矩阵,并称作不定导纳矩阵(是奇异矩阵)。由于它有简单而系统的列写和求解方法,且适合于用计算机处理,因此是分析线性无源和有源网络的重要方法。
2.6拓扑分析法
一类拓扑方法是把电网络中各电流电压等物理量之间的关系用线图表示出来,再按线图的简化规则或公式求出网络函数,其中典型的方法是信号流图法。另一类是根据电网络的线图和网络中元件参数,通过计算其各种树的树支导纳乘积来求得网络函数。这种方法称作树枚举法或K-树法。拓扑分析方法适合于用计算机处理,易于导出含符号的网络函数,但它们能处理的电网络规模较小。
直流激励可作为正弦激励ω等于零的特例来处理,对于周期信号,可借助于傅里叶级数将它分解为许多不同频率的正弦分量,由于线性网络服从叠加定理,可以用相量法分别求出其各个正弦分量的响应后再叠加即可。
非周期信号激励下的线性网络分析可借助拉普拉斯变换来求解,这种变换将网络的微积分方程转换成代数方程,将网络元件的电流电压关系用运算阻抗和运算导纳来表示,将网络中的和转换为复数的变换式V(s)和I(s)。该法可视为相量法的推广,它将相量法中的jω换成了复频率s(这里s=δ+jω),故称作运算法。它可沿用在相量法中的各种解法。若还需求得响应的时域函数式,则应对响应的变换式作拉普拉斯反变换来求得。
3.1状态变量分析
既适用于线性时不变网络,也可用于时变和非线性网络。对于线性时不变网络,通常以电容、电压和电感、电流作为状态变量,并导出一组以它们为待求量的一阶微分方程组——状态方程。状态方程可由网络的拓扑图形得出,也可由网络的高阶微分方程或网络函数导出。这种方法的优点在于对这种一阶微分方程组已有丰富的求解方法,且适于用计算机处理。此外它还易于应用到时变网络和非线性网络。
线性时变网络分析除了采用状态变量法之外,还可采用时变网络函数来分析。对非线性网络,由KVL、KCL和VCR导出的网络方程为非线性方程,一般无封闭解,通常用数值解法或图解法求解。
3.2网络的计算机辅助分析
随着计算机技术的发展,20世纪60年代出现了通用的网络分析程序,它不仅便于计算,而且促进了网络理论的发展。这类通用的网络分析程序可用于直流分析、正弦稳态分析、瞬态分析、噪声分析、容差分析以及非线性网络分析等。程序中采用较多的方法有改进节点法、状态变量法和混合分析法等,并引入稀疏矩阵等技术以提高解方程的效率。

相似回答
大家正在搜