X-31的研制过程

如题所述

第1个回答  2016-05-28

为证明这一论点,美国洛克韦尔和德国MBB公司根据美、德政府、
美国国防预研局(DARPA)和美国海军的一项联合计划设计了加强战斗机机动性验证机 X-31。该机1986年底开始设计,1987年8月完成。一共生产了2架,分别称为X-31A和X-31B,并先后在1990和1991年首飞。1993年,机上安装了头盔目视/音频显示器,使飞行员在大迎角情况下作战时能了解自己的位置。试验中,X-31可控飞行达到70°迎角,并在这迎角完成了一次绕速度矢量的控制横滚。第二架飞机利用失速后机动能力完成了快速小半径的180°转弯。X-31能以超过任何常规飞机的气动力极限正常飞行。它可做的一个称为 赫布斯特(Herbst)机动 是将X-31拉至74°迎角,绕速度矢量滚转并反向下滑加速飞行的机动动作。这动作大大减小了战斗机转弯半径,可迅速使机头指向后方目标。
X-31完成180度转弯的半径约为149米,时间12秒。而用常规机动(无推力矢量),X-31的转弯半径约为823米。
X-31与F/A-18进行过多次一对一空中作战试飞。对抗用的F/A-18飞机经气动及飞行控制系统改装,在常规转弯性能上接近X-3l。空战结果,X-31在94次演练中,胜78次,平8次,负8次。利用NASA空战模拟器同样条件下作战71次,X-31胜56次,平7次,负8次。当然这些空战和作战模拟是在一定约束条件下进行的,而且只限于目视格斗。
5年来两机共试飞538架次。1995年1月19日X-31A在美国航空航天
局德赖登飞行研究中心坠毁。同年这项目研究结束。后来, X-31进行过无尾飞机技术的飞行验证研究。虽然实际上并没有去掉垂尾,但飞行控制系统重新编程后,飞机上其它舵面被用来抵消垂尾的稳定性功能使飞机像没有垂尾一样,然后由推力矢量来代替垂尾的作用以模拟无尾飞行。1994年3月17日X-31成功地进行了试飞,高度11600米,速度达到M1.2。在高速平飞和转弯时,试飞员仅用发动机推力矢量技术成功地演示了飞行的稳定性和操纵性。实现了史无前例的无垂尾超音速飞行。
2002年美德两国想利用X-31B进行极短距起飞和着陆研究(ESTOL)称VECTOR项目,计划试飞45次,准备靠推力矢量作用将着陆迎角从现在的12度提高到24度。初步试飞表明效果明显,着陆速度降低31%,滑跑距离从2400米减少到520米。后由于经费削减,项目取消。
随着中距空空导弹的发展,对未来空战是以超视距作战为主还是目视格斗为主争论很大。因此过失速机动技术的研究目前已经暂告一段落。
这架 X-31 是Pingp 摄于 2004 年 5 月柏林国际航空航天展览会。这是一架在最新改型的 X-31,被称为 X-31 VECTOR, 即带矢量推力的超短距起飞着陆控制和无尾飞行研究,Vectoring Extremely short takeoff and landing Control,and Tailless Operations Research,与第一阶段的 X-31 EFM(增强机动性战斗机)研究超机动性不同,VECTOR 研究推力矢量控制下的极短距起飞和着陆技术,研究成果可以应用在未来无人机项目上。VECTOR 由美国海军和波音公司,和德国联邦国防科技与采购办公室(BWB)、德国空军第 61 试验中心(WTD)、德国 EADS 军用飞机公司、德国航空研究局(DLR)飞行系统科技学院共同实施,可以在 VECTOR 项目徽章上看到。 谈到战斗机的机动性无外乎包括常规机动性和非常规机动性. 如果谈常规机动性,当然要是指飞机的推重比、翼载、转弯速度等. 非常规机动则包括过失速机动和直接力控制的非常规机动,过失速机动就是将飞机的仰角远远超过其失速仰角,在速度非常小的情况下.迅速改变飞机速度矢量的方向和机头指向。比方美国X31验证机的过失速机动几个典型动作. A.拉杆使飞机成70度仰角,然后做翻转150度的航向的失速筋斗,然后再绕其速度矢量做150度外切横滚; B.先拉杆成70度仰角,再以50度仰角作左转弯完成150度的转向。C。拉杆以3G过载15-17度仰角至倒飞,在此状态下使飞机以70度仰角左传180度,然后再次90度转向。
区别于传统的现代战斗机常规设计的是主动控制技术(Active Control Technology),但不要忘了,主动控制技术是由美国率先提出的一种飞机设计和控制技术。从飞机设计的角度来说,主动控制技术就是在飞机设计的初始阶段就考虑到电传飞行控制系统对总体设计的影响,充分发挥飞行控制系统潜力的一种飞行控制技术。比如F-16就是世界上第一架采用主动控制思想设计的飞机。比如采用主动控制技术:1.放宽静稳定度 2.实现直接力控制 3.控制机动载荷 4.控制突风载荷 5.控制机体颤振 6.采用综合火控/飞行/推力控制系统。