最近老师让写篇数学论文,难哪!希望各位好友帮帮!!!

别的论文好写,这数学论文可就难喽,数学研究了这么几百年了,大多数理论都差不多完善了!再着本人不才,对数学没多大兴趣。还起各位帮忙!

培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现。

数学教学中,“一题多解”是训练,是培养学生思维灵活的一种良好手段,通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领,在教材安排的例题中,有相当类的题目存在一题多解的情况。例初中数学教材第三册《线段中垂线性质》一节中有一例。

在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,

AE是CF的中垂线交BC于E,求证:∠1=∠2

分析:

方法(1):因为∠1与∠CFA互余,

所以要证∠1=∠2,关键证:∠CFA=∠ACF

要证AC=AF,即有中垂线性质可得。

方法(2):利用全等△进行证明,过点F作FM⊥CB于M,证△CDF≌△CMF,即可。

方法(3):利用中介量,连结EF可得EC=EF=>∠2=∠3

=>∠1=∠2

利用△ACE≌△AFE=>EF⊥AB=>CD//EF=>∠1=∠3

方法(4):利用外角的性质, ∠AFC=∠2+∠B ∠3=∠B 利用条件即可得.

∠ACF=∠1+∠4 ∠AFC=∠ACF

通过这一例题的教学,不仅能使学生掌握新知识,还能起到复习巩固旧知识的作用,使学生对证明角相等的方法有了更进一步的明确, 同时能活跃课堂气氛,使学生对数学学习产生浓厚的兴趣,也培养了学生的一种钻研精神,使学生在思考问题上具有灵活性、多变性,避免了学生在几何证明中钻死胡同的现象,所以教师在教学过程中,要重视一题多解的教学,特别在备课中要根据教学内容、学生情况适当地进行教材处理和钻研,要对知识进行横向和纵向联系,这堂课才能做到丰富多彩,同时教师在课堂上也要有应变能力,认真听取学生的一些方法,不能局限于自己的思想法,在本人的一次例题教学中,碰到一件令我吸取教训的事,在一节几何课上,我出了这样一题:

“已知AB//CE,求证∠ABC+∠BCD+∠CDE=360°”。

我在教学准备过程中,我想好了两种方法:

第一种是过点C作AB(CD)的平行线,

第二种是连结BD。

这两种方法比较常见也比较方便,但在这例题教学中,学生并没有按照我的思路上考虑,有一学生举手发言说:在AB上任取一点连结G连结GC,当时我马上指出他的思路不对,之后,我就介绍了上述两种方法,但下课后,学生递上了一份答案:“他原来画的辅助线未动,还在DE上任取一点H连结CH,又作CF//BA,这样很快得出∠1=∠2,∠3=∠4,不难推知△GBC与△HDC之内角总和为360°,到此只须再做两次等量代换此题便得证,所以教师在教学过程中,不能局限于自己的思路,也不能怕学生问题回答错了而影响自己的教学安排,多听听学生的回答,可能在教学中会起到意想不到的作用,同时能提高学生的学习积极性,使其思维变得宽广、深刻、灵活。

“一题多解”是加深和巩固所学知识的有效途径和方法,充分运用学过的知识,从不同的角度思考问题,采用多种方法解决问题,这有利于学生加深理解各部分知识间的纵、横方向的内在联系,掌握各部分知识之间的相互转化,所以教师在

参考资料:从百度里查的

温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-06-30
您好!

初2的学生数学论文:《勾股定理的证明方法探究》

勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。

据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明!

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。

勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。

1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a^2+b^2=c^2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。

2.希腊方法:直接在直角三角形三边上画正方形,如图。

容易看出,

△ABA’ ≌△AA'C 。

过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。

△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。

于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,

即 a2+b2=c2。

至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。

这就是希腊古代数学家欧几里得在其《几何原本》中的证法。

以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:

⑴ 全等形的面积相等;

⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。

这是完全可以接受的朴素观念,任何人都能理解。

我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:

如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。

赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。

西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。

下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。

如图,

S梯形ABCD= (a+b)2

= (a2+2ab+b2), ①

又S梯形ABCD=S△AED+S△EBC+S△CED

= ab+ ba+ c2

= (2ab+c2)。 ②

比较以上二式,便得

a2+b2=c2。

这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。

在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。

如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则

△BCD∽△BAC,△CAD∽△BAC。

由△BCD∽△BAC可得BC2=BD ? BA, ①

由△CAD∽△BAC可得AC2=AD ? AB。 ②

我们发现,把①、②两式相加可得

BC2+AC2=AB(AD+BD),

而AD+BD=AB,

因此有 BC2+AC2=AB2,这就是

a2+b2=c2。

这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。

在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:

设△ABC中,∠C=90°,由余弦定理

c2=a2+b2-2abcosC,

因为∠C=90°,所以cosC=0。所以

a2+b2=c2。

这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

总之,在勾股定理探索的道路上,我们走向了数学殿堂
第2个回答  2008-06-22
在网上搜
第3个回答  2008-07-01
123