可降解塑料的分类

如题所述

可降解的塑料一般分为四大类: 在微生物的作用下,可完全分解为低分子化合物的塑料。其特点是贮存运输方便,只要保持干燥,不需避光,应用范围广,不但可以用于农用地膜、包装袋,而且广泛用于医药领域。随着现代生物技术的发展,生物降解塑料越来越受到重视,已经成为研究开发的新一代热点。
PHA降解塑料是生物降解塑料中性能最为优良的,同时由于其成本较高,生产工艺较为复杂,还处于市场起步阶段。2010年全球的PHA的产能还不到8万吨,而其中美国的Metabolix公司有大约5万吨的产能,占据了市场上的60%以上。中国企业在PHA的生产工艺和研发上同样走得较为靠前,天津国韵生物材料有限公司拥有1万吨的PHA产能,宁波天安拥有2000吨的产能,深圳意可曼生物科技有限公司有5000吨的产能。日本的Kaneka公司,巴西的PHBIndustrial公司也是PHA行业的典型代表,这些公司都是PHA行业的推动者,虽然说PHA的应用较为局限,导致Metabolix每年的实际销售量还不超过100吨,但是随着未来下游应用的逐渐拓展,尤其是在薄膜包装,农膜,食用餐具,无纺布等行业应用的进一步成熟,PHA的市场潜力巨大。 在塑料中添加吸水性物质,用完后弃于水中即能溶解掉,主要用于医药卫生用具方面(如医用手套),便于销毁和消毒处理。
淀粉基塑料
到目前为止,淀粉基降解塑料主要有填充型、光/生物双降解型、共混型和全淀粉塑料四大类。
1、填充型淀粉塑料,1973年,Griffin首次获得淀粉表面改性填充塑料的专利。到80年代,一些国家以Griffin的专利为背景,开发出淀粉填充型生物降解塑料。填充型淀粉塑料又称生物破坏性塑料,其制造工艺是在通用塑料中加入一定量的淀粉和其他少量添加剂,然后加工成型,淀粉含量不超过30%。填充型淀粉塑料技术成熟,生产工艺简单,且对现有加工设备稍加改进即可生产,因此目前国内可降解淀粉塑料产品大多为此类型。
天然淀粉分子中含有大量羟基使其分子内和分子间形成极强的氢键,分子极性较大,而合成树脂的极性较小,为疏水性物质。因此必须对天然淀粉进行表面处理,以提高疏水性和其与高聚物的相容性。主要采用物理改性和化学改性两种方法。
2、光/生物双降解型生物降解塑料在干旱或缺乏土壤等一些特殊区域难以降解,而光降解塑料被掩埋在土中时也不能形成降解,为此,美、日等国率先开发了一类既具光降解,又具生物降解性的光/生物双降解塑料。光/生物降解塑料由光敏剂、淀粉、合成树脂及少量助剂(增溶剂、增塑剂、交联剂、偶联剂等)制成,其中光敏剂是过渡金属的有机化合物或盐。其降解机理是淀粉被生物降解,使高聚物母体变疏松,增大比表面积,同时,日光、热、氧等引发光敏剂,导致高聚物断链,分子量下降。
3、共混型淀粉共混塑料是淀粉与合成树脂或其他天然高分子共混而成的淀粉塑料,主要成分为淀粉(30%~60%),少量的PE的合成树脂,乙烯/丙烯酸(EAA)共聚物,乙烯/乙烯醇(EVOH)共聚物,聚乙烯醇(PVA),纤维素,木质素等,其特点是淀粉含量高,部分产品可完全降解。
日本开发了改性淀粉/EVOH共聚物与LDPE共混、二甲基硅氧烷环氧改性处理淀粉,然后与LDPE共混。意大利Novamont公司的Mster-Bi塑料和美国Warner-lambert公司的NoVon系列产品也属于此类产品。Mster-Bi塑料是连续的EVOH相和淀粉相的物理交联网络形成的高分子合金。由于两种成分都含有大量的羟基,产品具有亲水性,吸水后力学性能会降低,但不溶于水。
4、全淀粉型将淀粉分子变构而无序化,形成具有热塑性的淀粉树脂,再加入极少量的增塑剂等助剂,就是所谓的全淀粉塑料。其中淀粉含量在90%以上,而加入的少量其他物质也是无毒且可以完全降解的,所以全淀粉是真正的完全降解塑料。几乎所有的塑料加工方法均可应用于加工全淀粉塑料,但传统塑料加工要求几乎无水,而全淀粉塑料的加工需要一定的水份来起增塑作用,加工时含水量以8%~15%为宜,且温度不能过高以避免烧焦。日本住友商事公司、美国Wanlerlambert公司和意大利的Ferruzzi公司等宣称研制成功淀粉质量分数在90%~100%的全淀粉塑料,产品能在1年内完全生物降解而不留任何痕迹,无污染,可用于制造各种容器、薄膜和垃圾袋等。德国Battelle研究所用直链含量很高的改良青豌豆淀粉研制出可降解塑料,可用传统方法加工成型,作为PVC的替代品,在潮湿的自然环境中可完全降解。
氧化降解
这是一项在国内还未被大多数人了解到的技术,在传统的塑料生产原料中加入添加剂,与一般的色母添加方法相同。在塑料制品被遗弃后,添加剂中两种物质起作用:一是预氧化剂(主要是一些无毒金属离子),二是生物降解促进物质(主要是一些天然植物纤维素)。预氧化剂控制塑料在未被遗弃时保持应有的寿命及功能,在遗弃后通过过氧化反应降低分子量,使得聚合物变脆,易于微生物分解。生物降解促进物质主要是促进微生物滋生。此项技术相对淀粉基塑料技术而言,简单易行,成本降低,一般设备就可以生产,据相关验证称,塑料的性能也得到了很好的维持。节约了粮食。英国WELLS公司即采用此法。
常见塑料的简易鉴别法 在采用各种塑料再生方法对废旧塑料进行再利用前,大多需要将塑料分拣。由于塑料消费渠道多而复杂,有些消费后的塑料又难于通过外观简单将其区分,因此,最好能在塑料制品上标明材料品种。中国参照美国塑料协会(SPE)提出并实施的材料品种标记制定了GB/T16288—1996“塑料包装制品回收标志”, 虽可利用上述标记的方法以方便分拣,但由于中国尚有许多无标记的塑料制品,给分拣带来困难,为将不同品种的塑料分别,以便分类回收,首先要掌握鉴别不同塑料的知识。
外观鉴别
通过观察塑料的外观,可初步鉴别出塑料制品所属大类:热塑性塑料,热固性塑料或弹性体。一般热塑性塑料有结晶和无定形两类。结晶性塑料外观呈半透明,乳浊状或不透明,只有在薄膜状态呈透明状,硬度从柔软到角质。无定形一般为无色,在不加添加剂时为全透明,硬度从硬于角质橡胶状(此时常加有增塑剂等添加剂)。热固性塑料通常含有填料且不透明,如不含填料时为透明。弹性体具橡胶状手感,有一定的拉伸率。
加热鉴别
上述三类塑料的加热特征也是各不相同的,通过加热的方法可以鉴别。热塑性塑料加热时软化,易熔融,且熔融时变得透明,常能从熔体拉出丝来,通常易于热合。热固性塑料加热至材料化学分解前,保持其原有硬度不软化,尺寸较稳定,至分解温度炭化。弹性体加热时,直到化学分解温度前,不发生流动,至分解温度材料分解炭化。
常用热塑性塑料的软化或熔融温度范围见表
塑料品种
软化或熔融范围/c
聚醋酸乙烯
35~85
聚氧化甲烯
165~185
聚苯乙烯
70~115
聚丙烯
160~170
聚氯乙烯
75~90
尼龙12
170~180
聚乙烯
110
尼龙11
180~190
聚三氟氯乙烯
200~220
尼龙610
210~220
聚-1-丁烯
125~135
尼龙6
215~225
聚偏二氯乙烯
115~140(软化)
聚碳酸酯
220~230
有机玻璃
126~160
聚-4-甲基戊烯-1240醋酸纤维素
125~175
尼龙66
250~260
聚丙烯腈
130~150(软化)
聚对苯二甲酸乙二醇酯
250~260

温馨提示:答案为网友推荐,仅供参考