天空为什么是蓝的?原因并不像常见回答中所说的,是因为“空气中会有许多微小的尘埃、水滴、冰晶等物质,当太阳光通过空气时,波长较短的蓝、紫、靛等色光,很容易被悬浮在空气中的微粒阻挡,从而使光线散射向四方,使天空呈现出蔚蓝色。”
与可见光的波长(约400纳米~700纳米)相比,空气中的尘埃、水滴等微粒远远大于阳光中的可见光波长,因此当阳光遇到这些颗粒物的时候,它们会向不同的方向反射。但是,这样的反射对于不同波长(或者说不同颜色)的光来说,效果都是相同的。换句话说,尘埃等颗粒物反射出来的,仍然是包含所有颜色的白光。如PM2.5即空气中悬浮着的尺度≤2.5微米的颗粒物造成的污染,所以当空气污染指数很高的时候,天空会是白茫茫的一片。
那天空为什么是蓝色的呢?实际上,空气中确实存在大量尺度比可见光波长更小的微粒就是空气中的多种气体分子,比如氧气和氮气分子的“直径”都是0.3纳米左右。遇到这些气体分子的时候,有些光子就会被吸收。一段时间之后,分子又会释放出另一个光子。放出的光子跟吸收的光子颜色相同,但是方向变了。虽然所有颜色的光子都会被吸收,但频率较高(即颜色较蓝)的光子比频率较低(颜色较红)的光子更容易被吸收。这个过程被称为瑞利散射,是以19世纪70年代最先描述这一过程的英国物理学家约翰·瑞利爵士的名字命名的。
那么,蓝色光更容易与空气分子发生瑞利散射,又怎么会产生蓝天呢?先做个简单的假设,如果不存在任何空气,天会是什么颜色?虽然我们大多数人都没有上过太空,但从阿波罗登月的纪录片中可以看到,月亮上哪怕太阳当空照,天空仍然是黑色的。
由于空气中存在瑞利散射,情况就完全不同了,阳光在大气的传播途中,偏蓝色的光更容易发生瑞利散射而被偏折到了与阳光原来传播的方向不同的方向上。于是,我们就算不直对着太阳看,而是朝天空中的其他方向上看,也总有被空气分子散射的光子(更多的是蓝光)射入我们的眼睛,于是就看到了蓝天。如图所示[2]
太阳光是由赤、橙、黄、绿、青、蓝、紫七种光组成的。这七种光中青、蓝、紫波长较短,容易被空气分子和尘埃散射。大气分子及大气中的尘埃对波长较短的蓝光的散射能力大大高于对其它波长较长的光子。与此同时,青、蓝、紫光因波光短,当它们遇到大气分子、冰晶等,容易发生散射。被散射的这三种光布满天空,而眼睛原本对紫色就不敏感,加上紫色光在散射的同时也被大量吸收,这时,眼睛里视锥细胞中含有的蓝敏色素起到了重要的作用,于是,眼睛所看到的天空便是蓝色的。
拓展资料:
1. 光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光波长不发生改变的有丁铎尔散射、分子散射;波长发生改变的有拉曼散射、布里渊散射和康普顿散射等。丁铎尔散射首先由J.丁铎尔研究,是由均匀介质中 的悬浮粒子(如空气中的烟雾、尘埃)以及浮浊液、胶体等引起的散射。真溶液不产生丁铎尔散射,化学中常根据有无丁铎尔散射来区别胶体和真溶液。分子散射是由分子热运动所造成的密度涨落引起的散射。波长发生改变的散射与散射物质的微观结构有关。
2. 散射光的波长与入射光相同,而其强度与波长λ4成反比的散射,称瑞利散射定律,由瑞利于1871年提出。此定律成立的条件是散射微粒的线度小于波长。若入射光为自然光,不同方向散射光的强度正比于1+cos2θ,θ为散射光与入射光间的夹角,称散射角。θ=0或π时散射光仍为自然光;θ=π/2时散射光为线偏振光;在其他方向上则为部分偏振光。根据瑞利散射定律可解释天空的蔚蓝色和夕阳的橙红色。
3. 当散射微粒的线度大于波长时,瑞利散射定律不再成立,散射光强度与微粒的大小和形状有复杂的关系。G.米和P.德拜分别于1908年和1909年以球形粒子为模型详细计算3对电磁波的散射。米氏散射理论表明,当球形粒子的半径a<0.3λ/-2π时散射光强遵守瑞利定律,a较大时散射光强与波长的关系不再明显。用白光照射由大颗粒组成的物质时(如天空的云层等),散射光仍为白色。气体液化时,在临界状态附近由密度涨落引起的不均匀区域的线度比波长要大,所产生的强烈散射使原来透明的物质变混浊,称为临界乳光。
本回答被网友采纳