应该从哪些维度去培养计算机科学思维呢?

如题所述

计算机科学创新性思维的培养

一、计算机科学与技术对培养学生的创新性思维和动手能力的方法

根据创新教育理论,创新能力包括创造性观察能力、记忆能力、想象能力、思维能力和实践能力五个方面。运用计算机科学与技术,通过创设问题环境,培养学生思维的灵活性与创造性,激发学生进行创造性学习,营造主动参与、合作探究的学习方式,从而提高学习效率,培养创新能力。

1.在课堂教学中训练学生的创新性思维和动手能力爱因斯坦曾说过“:思维世界的发展,在某种意义上说就是对好奇的不断摆脱。”而好奇心是学生的天性,有好奇心才会有学习的动机,才会有发明创造。一般来说,好奇心强的学生对知识的渴望迫切,上课时注意力更集中。计算机科学与技术这门课程的无限拓展性很好地满足了学生的这种好奇心,通过问题探究、协商学习、意义建构等活动,激发起学生的学习动机,培养其学习兴趣,使教学过程转化为以学生为主体的学习过程。通过学生与学生之间的协商讨论方式,使学生主动去读书、去探索、去感悟,从而获得新知识、掌握新知识,这个过程在某个意义上说,也是一个创新的过程。

2.在计算机科学与技术活动中培养和提高学生创新性思维和动手操作能力以实践和操作为特点的计算机科学与技术专业遇上了大多数是独生子女,在蜜糖中泡大的孩子。虽然他们思维活跃,容易接受新生事物,但是依赖性也十分强,遇到困难是不会考虑自己如何解决,而是习惯于在家靠父母、在学校靠教师来解决。学生的动手能力不强,直接导致了学生缺乏创新精神,无法真正地适应实践工作和适应市场与产业的发展,在计算机科学与技术的实践活动中,他们有好奇心,有求知欲望,有活动的热情,因此要培养学生对计算机科学与技术竞赛的兴趣,从要我学改为我要学,提高他们自己解决问题的意识和能力。

二、培养学生的创新性思维和动手能力应遵循的原则

1.主体性原则在教学过程中,必须树立“一切从学生出发”的思想。教师要根据情况多给学生提供一些实践、动手的机会,培养学生积极主动参与实践的兴趣与能力,使学生理论联系实际,学以致用,提高学生的创新性思维与动手能力。

2.创新性原则教师必须采用与计算机科学与技术相适应的教学方法,从而提高学生的创新性思维能力,不能只是“耳提面命”式的灌输知识,而是要引导学生的发散性思维,鼓励学生质疑现状,挑战现状,培养学生的归纳、演绎能力。教师还需要优化课程结构,增加选修课的比重,以弥补各种必修课给学生的知识结构造成的禁锢,这样有利于学生开展自主学习,发展兴趣爱好。对于计算机科学与技术专业的学生而言,要利用其专业特有的优势,提倡其进行跨校、跨院、跨学科地选修课程,因为计算机科学与技术专业涉及的学科范围非常广,多元化的知识补充有利于更好地完善专业知识的学习。

3.实践性原则要求教师必须理论联系实际,深入学生中获取第一手资料,从而归纳总结出符合学生的经验方法。众所周知,计算机科学与技术专业区别于其他的专业学科的最重要的特点就是其本身是一门实践性很强的应用性学科,注重学生对计算机的熟练操作和应用,因此,教师在进行课程设计和课程教授时,应更加重视培养学生的动手能力,可以有针对性的根据阶段课程的学习,开展一些相关的竞赛活动,以激励形式激发学生的学习热情,引导学生自觉重视操作技术的培养,特别是带领学生参加一些科研课题的开发。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-11-13
计算机科学创新性思维的培养

一、计算机科学与技术对培养学生的创新性思维和动手能力的方法

根据创新教育理论,创新能力包括创造性观察能力、记忆能力、想象能力、思维能力和实践能力五个方面。运用计算机科学与技术,通过创设问题环境,培养学生思维的灵活性与创造性,激发学生进行创造性学习,营造主动参与、合作探究的学习方式,从而提高学习效率,培养创新能力。

1.在课堂教学中训练学生的创新性思维和动手能力爱因斯坦曾说过“:思维世界的发展,在某种意义上说就是对好奇的不断摆脱。”而好奇心是学生的天性,有好奇心才会有学习的动机,才会有发明创造。一般来说,好奇心强的学生对知识的渴望迫切,上课时注意力更集中。计算机科学与技术这门课程的无限拓展性很好地满足了学生的这种好奇心,通过问题探究、协商学习、意义建构等活动,激发起学生的学习动机,培养其学习兴趣,使教学过程转化为以学生为主体的学习过程。通过学生与学生之间的协商讨论方式,使学生主动去读书、去探索、去感悟,从而获得新知识、掌握新知识,这个过程在某个意义上说,也是一个创新的过程。

2.在计算机科学与技术活动中培养和提高学生创新性思维和动手操作能力以实践和操作为特点的计算机科学与技术专业遇上了大多数是独生子女,在蜜糖中泡大的孩子。虽然他们思维活跃,容易接受新生事物,但是依赖性也十分强,遇到困难是不会考虑自己如何解决,
第2个回答  2020-11-13
众所周知,计算思维(Computational thinking)能力是计算机专业人才的最基本、最重要的能力之一[1]。目前,我国高校的计算机科学与技术专业通常会先在课程体系中安排以数学分析为基础、以实数为主要运算对象的课程,接着安排以离散数学为代表的、以抽象集合及元素为运算对象的课程,希望能通过这些课程的学习来培养学生的计算思维能力。尽管计算机科学在本质上源自数学思维,它的形式化解析基础筑于数学之上,但是仅仅通过数学课程的学习来使学生弄清计算思维的基本概念和内涵是不够的,而且进程太慢。
  对于刚刚进入大学进行专业学习的大学生来说,他们在中学阶段获得的计算机知识是有限的,没有专业的背景,并没有认识到计算思维能力对计算机专业学习和能力培养的重要性。如果我们能在一年级就帮助学生对整个计算机科学有一个整体的认知,处理理解计算机科学的概念、思想和基本方法,将有力于学生尽快完成从中学到大学学习方式方法的转变,有助于学业的完成。
  因此,我们有必要从计算思维的角度向学生阐述计算机学科思想与方法论,使学生一开始对专业课程学习有一个比较准确的定位,对计算机科学的专业内涵和方法论有所了解,从而进一步明确学习的目标,培养自己良好的学风。
  
  2 计算思维与计算机专业学习导论
  
  J. M. Wing教授在《Computational Thinking(计算思维)》一文中指出[2]:计算思维是建立在计算过程的能力和限制之上的,不管这些过程是由人还是由机器执行的。计算方法和模型给了我们勇气去处理那些原本无法由任何个人独自完成的问题求解和系统设计。计算思维涉及运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为,它涵盖了反映计算机科学之广泛性的一系列思维活动[2]。
  从计算机发展的历史来看,目前的计算机已经成为适合于每一个人的“一种普遍的认识和一类普适的技能”[2]。一定程度上,这也意味着计算机科学从前沿高端到基础普及的转型[3]。
  为了使计算机专业的学生一开始就能对专业的课程体系和知识体系有一个比较清晰的了解,我们必须给学生提供一门导引型课程,站在计算思维的高度和广度来论述计算机学科的基本概念、基本方法和发展趋势,讨论学科的内涵和本质,科学地为学生们进行正确的导学。
  为此,针对初入大学的计算机专业学生,我们设置了“计算机科学导论”课程,
第3个回答  2020-11-13
计算行动则是一种新的计算机教育框架,提出在学习计算机的同时,年轻人也应该有机会利用计算机来创造对他们的生活和社区有直接影响的事物。计算行动具有两个关键维度:计算身份和数字赋能,而且进一步提出通过专注计算行动以及计算思维,教师可以使计算机教育对年轻的学习者更具包容性、激励性和赋能作用。

从计算机学习者开始学习编程的那一刻开始,他们就有能力去开发对他们的生活有实质影响的计算机产品,而他们所需要的就是处于一个允许他们这么做的环境之中。

很多时候,K-12计算机教育一直强调孩子学习编程的“基础”。更高阶段的以发展学习者的计算思维为中心的计算机科学教育,主要聚焦于让学习者去理解计算的一些细节要素,如变量、循环条件、并行、运算符和数据处理。这种最初的关注点是计算的概念和过程,将开发现实应用程序留给“以后”再做的做法存在这样一种风险:让学习者觉得学习计算机对他们来说并不重要。这种做法回避了很多学习数学和物理的学生们都曾问过的一个问题:“什么时候我们才能在生活中运用到所学的知识?

虽然已经有各种尝试将计算机教育置于现实世界的背景与问题中,但这些尝试通常开发的是通用系统(例如为超市设计的结账系统),无法与学习者特定的个人兴趣和生活联系起来。尽管这些系统在实际应用中对所有学习者都是有价值的,但是对于年轻女性和来自非主流群体的青年来说,并没有给他们提供开发具有现实意义的计算机解决方案的机会,这是一个严重的问题。对于传统上在计算领域代表名额不足的这些群体,人们发现,融入并归属于更广泛的计算社区的感觉与能够开发对其自身和社区都至关重要的计算解决方案密切相关。通过与学生的现实生活联系起来,我们可以帮助他们以批判的眼光看待自己能够在影响社区方面充当怎样的角色,并且使得他们不仅仅止步于学习简单的编程,相反,我们可以问他们想要对什么内容编程以及为什么对它们编程。

通过将计算机教育置于与学生紧密相关的现实世界中,可以能让更多的人参与到计算机领域中来为青年和社会带来好处。这不仅有助于培养急需的程序员,也向社会输送了计算机文化和有解决问题能力的公民。
第4个回答  2020-11-13
首先,逻辑思维能力是所有理工科共同需要的重要能力(其实社会科学也一样需要)。计算机技术本身就是抽象加工出来的运算机器,所以逻辑思维能力用的更多一些。
然后,要说句不好听的。IQ大家应该都知道,其中占很大比重的就是逻辑思维能力。研究显示其主要是天生决定的,后天虽然能提高,但是比起天资聪颖的人,总还是差很多。
当然,还是可以通过努力有所提高的。下面来说一说如何提高。

一是掌握正确的基本逻辑方法。说起来很简单,逻辑学教材拿一本出来你会觉得完全没必要读,全篇废话。但是这的确是基础。

二是进行思维训练。思维训练就是思考。看一些讲算法的书比较有利于快速提高。算法类书籍难度各异,侧重点也各异。有的注重形式逻辑,有的完全是符号推演。根据自己能力需求选择吧。

三是注重知识应用。我们都学习了十几年,积累了很多知识,但是教育体制畸形,我们学的好多东西单纯被拿来应试,却不会应用。像是数学,题主应该学完了高数,做题可能手到擒来。现实生活中能像做题那样直接应用吗?
逻辑思维能力在科学研究领域决定了一个人的成就上限。换句话讲那些站在科学殿堂顶端的人都具备超凡逻辑思维能力。但是无奈,只能尽力去提高,却不能保证必然成功。