度为3的一棵树共有30个结点,其中度为3,1的结点个数分别为3,4。
则该树中的叶子结点数为A)14
B)15
C)16
D)不可能有这样的树
算是能算出结点为2的结点数为8,但是结点为2的结点数不应该是比结点为0的结点数少1么
15个。
原因:3*3+2*(23-n)+1*4+0*n+1=30,则n=15。
1、二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。
2、二叉树的第i层至多有2^(i 1)个结点。深度为k的二叉树至多有2^k 1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0 = n2 + 1。二叉树算法常被用于实现二叉查找树和二叉堆。
扩展资料:
二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树算法有五种基本形态:
(1)空二叉树——(a)
(2)只有一个根结点的二叉树——(b)
(3)右子树为空的二叉树——(c)
(4)左子树为空的二叉树——(d)
(5)完全二叉树——(e)
注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
参考资料来源:百度百科-二叉树算法