跪求一个结合数学和科学的六年级小论文

一定不能少于800字,最好是关于像为什么栏杆会生锈啊,怎么防止他生锈啊。这个时候除了科学元素外,还要加入数学知识!
放心,我先给你30粉!满意再+20粉!
我说了无数遍!我要的是科学与数学的结合!不是数学题!现在已经有50分给你们了!一定药认真回答啊!
论文论文!是要有总结和评论的!不然老师光看见科学和数学!什么总结都没有!照样打0! 我决定!谁要是能让我满意!我给他再+50分!

数学符号的起源

数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。

例如加号曾经有好几种,现在通用"+"号。

"+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"μ"最后都变成了"+"号。

"-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。

到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。

乘号曾经用过十几种,现在通用两种。一个是"×",最早是英国数学家奥屈特1631年提出的;一个是"· ",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"×"号象拉丁字母"X",加以反对,而赞成用"· "号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。

到了十八世纪,美国数学家欧德莱确定,把"×"作为乘号。他认为"×"是"+"斜起来写,是另一种表示增加的符号。

"÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

十六世纪法国数学家维叶特用"="表示两个量的差别。可是英国牛津大学数学、修辞学教授列考尔德觉得:用两条平行而又相等的直线来表示两数相等是最合适不过的了,于是等于符号"="就从1540年开始使用起来。

1591年,法国数学家韦达在菱中大量使用这个符号,才逐渐为人们接受。十七世纪德国莱布尼茨广泛使用了"="号,他还在几何学中用"∽"表示相似,用"≌"表示全等。

大于号"〉"和小于号"〈",是1631年英国著名代数学家赫锐奥特创用。至于≯""≮"、"≠"这三个符号的出现,是很晚很晚的事了。大括号"{ }"和中括号"[ ]"是代数创始人之一魏治德创造的。
没有悬赏分,还要多点,你知足吧。 最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。
[经典例题]
例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?
[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。
因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。
例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析] 一个10尺长的竹竿应有三种截法:
(1) 3尺两根和4尺一根,最省;
(2) 3尺三根,余一尺;
(3) 4尺两根,余2尺。
为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
例4: 把25拆成若干个正整数的和,使它们的积最大。
[分析] 先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。
为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服
(2100+60)-(900+1200)=60套
例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。
[解] 乙有必胜的策略。
由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。
[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;
(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。
例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

[练习]
1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)
2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?
3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?
4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时?
5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。问:是先写者还是后写者必胜?如何取胜?

[习题参考答案及思路分析]
1、∵1001=7×11×13,∴可以7×13为公约数,这样这十个正整数可以是 ,91×2,它们的最大公约数为91。
2、对于直角三角形而言,在直角边的和一定的情况下,等腰直角三角形的面积最大。若两直角边的和为8,则三角形的最大面积为 ×4×4=8。
3、为了使每个人排队和打水时间的总和最小,有两种方法:
(1)排队的人尽量少;(2)每次排队的时间尽量少。因此应先让打水快的人打水,才能保证开始排队人多的时候,每个人等待的时间要少,故共需5×1+4×2+3×3+2×4+5=35(分钟)。
4、由于甲、乙单独开放都不可能在10小时注满水池,因此必须有时间甲、乙全放。为了使它们合放的时间最少,应尽量开放甲管(速度快),这样甲开10小时注满水池的,余下 只能由乙注满,需。因此甲乙两管全放最少需要4小时。
5、此问题我们可以从最简单问题入手,寻找规律,从而解决复杂问题,最后集合地点应在中间地点。
6、先写者存在获胜的策略。甲第一步写6,乙仅可写4,5,7,8,9,10中的一个,把它们分成数对(4,5),(8,10),(7,9)。如果乙写数对中的某个数,甲就写数对中的另一个数,则甲必胜。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2009-01-27
论“9”
以前朋友告诉我一个算命的方法,是一个姓名的算式,最终的结果代表了那个姓名的主人。
题目是这样的:将你名字的十位上的数乘以9,然后,再乘以2的4次方,最后加6。
其实把这道题里“十位”改成“最高位”可能会更好,毕竟你不可能要求每个人的名字笔画总数都要满10,不过世界上叫“乙一”或者“一乙”好像并不是太多。
不过你也不用费心算了,这个算式的最后结果一定是250。为什么回如此?在这里最关键恐怕是“十位上的数乘以9,然后将其各个数位上的数相加”这一句了。
首先,十位不可能为0,其次,它必定是个单数,一个不为0的单数乘以9,再将各个数位上的数相加,只有以下几种情况:
1×9=09 0+9=9
2×9=18 1+8=9
3×9=27 2+7=9
……
8×9=72 7+2=9
9×9=81 8+1=9
无论如何到这儿的答案就是9了,再往后的那些就是故弄玄虚了。
其实,9乘以两位数只要不是11的倍数、个位是1 的数,各位相加也是9,而若是碰到11、22、33……,11、21、31……各位相加便是9的两倍,18了。
若是9乘以三位数,而不是111的倍数、最后两位不是11、10的倍数,最后一位不是1,各位相加仍然是9;而如果一个乘数是111的倍数或最后两位是11的倍数的,乘积的各位相加,则是9的三倍27;而最后两位是10的倍数的数,只要不是110的倍数,十位不是1,乘积各位相加则为9的两倍,即18;若各位是1,只要不是111的倍数,最后两位不是11,则乘积各位相加为9的三倍,27。
再往下推,就过于烦琐,不过,无论如何,9总是一个奇妙的数!
第2个回答  2009-01-27
数学小论文
关于“0”

0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”

“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。

“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……

爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
第3个回答  2009-01-27
[专题介绍]
最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。
最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。
[经典例题]
例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?
[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。
因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。
例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析] 一个10尺长的竹竿应有三种截法:
(1) 3尺两根和4尺一根,最省;
(2) 3尺三根,余一尺;
(3) 4尺两根,余2尺。
为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。
例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。
例4: 把25拆成若干个正整数的和,使它们的积最大。
[分析] 先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。
例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。
如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。
例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。
为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服
(2100+60)-(900+1200)=60套
例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。
[解] 乙有必胜的策略。
由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。
[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;
(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。
例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

[练习]
1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)
2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?
3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?
4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时?
5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。问:是先写者还是后写者必胜?如何取胜?

[习题参考答案及思路分析]
1、∵1001=7×11×13,∴可以7×13为公约数,这样这十个正整数可以是 ,91×2,它们的最大公约数为91。
2、对于直角三角形而言,在直角边的和一定的情况下,等腰直角三角形的面积最大。若两直角边的和为8,则三角形的最大面积为 ×4×4=8。
3、为了使每个人排队和打水时间的总和最小,有两种方法:
(1)排队的人尽量少;(2)每次排队的时间尽量少。因此应先让打水快的人打水,才能保证开始排队人多的时候,每个人等待的时间要少,故共需5×1+4×2+3×3+2×4+5=35(分钟)。
4、由于甲、乙单独开放都不可能在10小时注满水池,因此必须有时间甲、乙全放。为了使它们合放的时间最少,应尽量开放甲管(速度快),这样甲开10小时注满水池的,余下 只能由乙注满,需。因此甲乙两管全放最少需要4小时。
5、此问题我们可以从最简单问题入手,寻找规律,从而解决复杂问题,最后集合地点应在中间地点。
6、先写者存在获胜的策略。甲第一步写6,乙仅可写4,5,7,8,9,10中的一个,把它们分成数对(4,5),(8,10),(7,9)。如果乙写数对中的某个数,甲就写数对中的另一个数,则甲必胜。