高分请高手帮忙翻译英文文献资料(5)

原文:Figure 4 shows the instrumentation of the test specimen (test
object). The wall of the specimen was 12.5 mm thick.The temperature was measured by 1.5 mm thermo-elements of Ktype. The location is shown in the figure. In some experiments water was filled into the specimen and boiled dry.
Several tests were performed with different heat loads and
different filling of water inside the specimen. These are reported in [5] and [6]. In this presentation three cases will be presented.
Simulations have been performed using VessFire. This is a
system for simulation of fire response of process equipment. It
simulates heat conduction and performs stress calculations of a
3-dimesional shell. Simultaneously the system simulates the
inventory by treating the gas phase and liquid phase separately.
The two phases are linked through evaporation, condensing,
heat transfer and evacuation (for blowdown simulations). The
whole system is linked together to a multi-physics simulation.
See [1] and [2].
VessFire is assuming exposure from a flame in kW/m2. In
general the flux can vary in time and space, but in this case the
heat load is constant in space. The heat flux includes both
radiated heat and convective heat and is defined to be the net
flux transferred to the exposed object while the object is at its
initial conditions. Figure 14, Figure 17 and Figure 20 show the
heat load applied in VessFire for the different cases. The load is
found by taking the average measured temperatures of the heating foil and apply the Stefan-Boltzmann law. The simulations assume the inventory gas zone initially to be filled with air, 78% N2 and 22% O2. The emissivity of the specimen is set to 0.7.
Figure 15, Figure 18 and Figure 21 show the results of
measured and calculated inventory temperatures. When
thermocouples are used to measure gas temperatures there is a
risk of having influence from the surrounding temperatures. In
this situation the surrounded steel was glowing and obviously
influenced the thermocouple by radiation. This is in general a
problem and should be noticed when results are published. The
influence can be quite strong and is here estimated by using the
calculated gas temperature to calculate a corresponding
thermocouple temperature. In the figures this is called “Calc.
temp. thermocouple”. The calculation is done stepwise by use
of: ( 此处一个公式)where ΔT is the temperature increase during the time Δt, mt is the mass per m and cp is the specific heat for the thermocouple (Inconel). The convective heat transfer is calculated as (此处一个公式)where At is the surface area of the thermocouple per m and Tl and Tt is the temperature for gas and thermocouple respectively. λ is the thermal conductivity for the actual gas and dt is the outer diameter of the thermocouple. Nu and Re is respective the Nusselt and Reynolds numbers.
The net radiation heat transfer is calculated as (此处一个公式) where As is the area of the enclosing specimen per m, εt = 0.3 is the emissivity thermocouple (Inconel),εs = 0.7 is the emissivity for specimen inside and σ is the Stefan-Boltzmann constant for black radiation. Ts is the specimen temperature on the inside.
The correction is an estimate, but it gives an idea of the magnitude of the influence on the thermocouple from the specimen surface.
Figure 16, Figure 19 and Figure 22 show the comparison between the measured and calculated steel temperatures. They also show the time where all the water is evaporated. The steel temperature at the bottom of the specimen remains constant as long as there is water present. When the steel is dry the temperature increases rapidly. As can be seen from the figures the boiling time is reasonably well predicted and so are the steel temperatures.

Figure 4 shows the instrumentation of the test specimen (test object). The wall of the specimen was 12.5 mm thick.图4示出了试验样本(试验目标)的仪器。样本的壁厚为12.5 mm厚。The temperature was measured by 1.5 mm thermo-elements of Ktype. The location is shown in the figure. In some experiments water was filled into the specimen and boiled dry. 温度用1.5mm的K型热电偶测量。其位置示于图中。在一些实验中,将水充到样本内,并经煮沸干燥。
Several tests were performed with different heat loads and different filling of water inside the specimen. These are reported in [5] and [6]. 在不同的热负载和样本内不同的充水下进行了多次试验,这些试验的结果在【5】和【6】中做了报道。In this presentation three cases will be presented. Simulations have been performed using VessFire. 在本介绍中,这些情况将加以介绍。已经用VessFire进行了仿真。This is a system for simulation of fire response of process equipment. VessFire是一种仿真火灾对工艺设备响应的系统。It simulates heat conduction and performs stress calculations of a 3-dimesional shell. 它仿真一个三维外壳的热传导,并进行应力计算。Simultaneously the system simulates the inventory by treating the gas phase and liquid phase separately. 同时,此系统通过分别处理气相和液相,仿真物料量。
The two phases are linked through evaporation, condensing, heat transfer and evacuation (for blowdown simulations). 气相和液相通过蒸发、凝聚、热传递和排放(用于排放仿真)联系起来。The whole system is linked together to a multi-physics simulation. See [1] and [2]. 整个系统与多物理仿真联系在一起。见文献【1】和【2】。VessFire is assuming exposure from a flame in kW/m2. In general the flux can vary in time and space, but in this case the heat load is constant in space. VessFire是假设来自一kW/m2为单位的火焰的暴露。一般来说,热通量随时间和空间而变,但是在这一情况下,热负载在空间上是恒定的。The heat flux includes both radiated heat and convective heat and is defined to be the net flux transferred to the exposed object while the object is at its initial conditions. Figure 14, Figure 17 and Figure 20 show the heat load applied in VessFire for the different cases. 热通量包括辐射热和对流热,并被定义为:在被暴露物体处于其初始状态时,传递到该物体的净热通量。图14、图17和图20示出了不同情况下施加在VessFire中的热负载。The load is found by taking the average measured temperatures of the heating foil and apply the Stefan-Boltzmann law. 该热负载通过获得加热(不锈钢)箔的平均实测温度而得到,并适用于Stefan-Boltamann(斯蒂芬玻尔兹曼)定律。The simulations assume the inventory gas zone initially to be filled with air, 78% N2 and 22% O2. The emissivity of the specimen is set to 0.7. 仿真假设库存气体区一开始是充有空气(78%的N2和22%的O2)的。样本的辐射率设定为0.7.
Figure 15, Figure 18 and Figure 21 show the results of measured and calculated inventory temperatures. 图15、图18和图21示出了物料库存温度实测的和计算的结果。When thermocouples are used to measure gas temperatures there is a risk of having influence from the surrounding temperatures. In this situation the surrounded steel was glowing and obviously influenced the thermocouple by radiation. 当用热电偶来测量气体温度时,存在来自周围温度影响的风险。在这种情况下,周围的钢发红光,而且由于辐射而显然影响到热电偶。This is in general a problem and should be noticed when results are published. The influence can be quite strong and is here estimated by using the calculated gas temperature to calculate a corresponding thermocouple temperature. 这一般来说是一个问题,而且应该在发表结果时加以注意。此影响可能十分强烈,而这里通过用计算得到的气体温度来计算相应的热电偶温度而加以估计。In the figures this is called “Calc. temp. thermocouple”. The calculation is done stepwise by use of: ( 此处一个公式)在这些图中,这称为“计算温度热电偶”。此计算用下式逐步进行:
( 此处一个公式)
where ΔT is the temperature increase during the time Δt, mt is the mass per m and cp is the specific heat for the thermocouple (Inconel). The convective heat transfer is calculated as
式中,ΔT是温度在时间Δt过程中的增加,mt为每米的质量,而cp为热电偶(因康镍合金)的比热。对流热传递的计算如下:
(此处一个公式)
where At is the surface area of the thermocouple per m and Tl and Tt is the temperature for gas and thermocouple respectively. λ is the thermal conductivity for the actual gas and dt is the outer diameter of the thermocouple. Nu and Re is respective the Nusselt and Reynolds numbers.
式中,At为每米热电偶的表面积,TI和Tt分别为气体和热电偶的温度,λ为实际气体的导热率,dt为热电偶的出口外径。Nu和Re分别是努塞尔数和雷诺数。
问题补充:The net radiation heat transfer is calculated as
净辐射热传递的计算如下:
(此处一个公式)
where As is the area of the enclosing specimen per m, εt = 0.3 is the emissivity thermocouple (Inconel),εs = 0.7 is the emissivity for specimen inside and σ is the Stefan-Boltzmann constant for black radiation. Ts is the specimen temperature on the inside.
式中As为每米封入样本的面积,εt = 0.3为热电偶(因康镍合金)的辐射率,εs=0.7为样本内部的辐射率,σ为黑体辐射的斯蒂芬玻尔兹曼常数。Ts为样本内部的温度。修正值为一估计值,但是它给出了一个有关样本表面对热电偶影响大小的概念。
The correction is an estimate, but it gives an idea of the magnitude of the influence on the thermocouple from the specimen surface.
Figure 16, Figure 19 and Figure 22 show the comparison between the measured and calculated steel temperatures. They also show the time where all the water is evaporated. The steel temperature at the bottom of the specimen remains constant as long as there is water present. When the steel is dry the temperature increases rapidly. As can be seen from the figures the boiling time is reasonably well predicted and so are the steel temperatures. 图16、图19和图22示出了钢的实测温度和计算温度之间的比较。它们也示出了所有水被蒸发的时间。只要有水的存在,在样本底部钢的温度就保持恒定。当钢干燥时,温度就迅速升高。诸如从图中可以看到的那样,沸腾时间得到相当好地预测,钢的温度也是如此。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2009-03-15
图4显示了仪器的测试标本(测试
对象) 。墙上的标本12.5毫米thick.The温度测量了1.5毫米热要素Ktype 。该位置如图所示。在一些实验水注入标本和煮干。
一些测试进行了不同的热负荷和
不同的灌装水内的标本。这些报告[ 5 ] [ 6 ] 。在这三起案件的介绍将提交。
模拟已用VessFire 。这是一个
系统模拟火灾反应的工艺设备。它
模拟热传导和执行的应力计算
3维壳牌。同时该系统模拟
存货处理气相和液相分开。
两阶段相联系,通过蒸发,冷凝,
传热和疏散(用于排污模拟) 。那个
整个系统联系在一起,以一个多物理模拟。
见[ 1 ]和[ 2 ] 。
VessFire是假设接触火焰在kW/m2 。印第安纳州
一般的流量可以在不同时间和空间,但在这种情况下,
热负荷是恒定的空间。热流包括
辐射热和对流换热和的定义是净
通量转移到暴露对象,而对象是在其
初始条件。图14 ,图17和图20显示
适用于热负荷VessFire对不同的情况。负载
同时发现的平均测量温度加热铝箔和适用斯蒂芬一玻耳兹曼定律。仿真承担库存气层最初充满空气, 78 % N2和22 %氧气。该发射率的标本被设置为0.7 。
图15 ,图18和图21显示的结果
测量和计算存货温度。何时
热电偶用来衡量气体温度有一个
具有影响力的风险从周围的温度。印第安纳州
这种情况下,包围钢发光,显然
影响热电偶辐射。这是一般来说
问题和应注意的时候公布结果。那个
影响可能相当强劲,估计在这里使用
计算气体温度来计算相应的
热电偶温度。的数字,这是所谓的“钙。
气温。热电偶“ 。计算是逐步使用
包括: (此处一个公式)凡ΔT场是在温度升高的时间ΔT场,山是大众每平方米和CP的比热的热电偶(镍) 。对流换热的计算公式为(此处一个公式)凡在是面积每平方米的热电偶和Tl和TT的温度天然气和热电偶分别。 λ是导热系数为实际气体和DT是外径热电偶。 Nu和再保险公司各自的努塞尔和雷诺数。

问题补充净辐射传热计算公式为(此处一个公式)凡在该地区的内附标本每平方米, εt = 0.3是发射热电偶(镍) , εs = 0.7是发射标本内和σ是斯蒂芬一波尔兹曼常数黑色辐射。指标是试样温度在里面。
这次调整的估计数,但它给出了一个设想的规模影响热电偶从标本表面。
图16 ,图19和图22显示的比较测量和计算钢温度。它们还显示时间,所有的水被蒸发。钢铁
温度底部的标本保持不变,只要有水存在。当钢干燥温度的升高迅速。可以看出,从数字
沸腾的时间是相当不错,因此预计钢铁温度
第2个回答  2009-03-15
图4显示了仪器的测试标本(测试对象) 。墙上的标本12.5毫米thick.The温度测量了1.5毫米热要素Ktype 。该位置如图所示。在一些实验水注入标本和煮干。 一些测试进行了不同的热负荷和不同的灌装水内的标本。这些报告[ 5 ] [ 6 ] 。在这三起案件的介绍将提交。 模拟已用VessFire 。这是一个
系统模拟火灾反应的工艺设备。
它模拟热传导和执行的应力计算
3维壳牌。同时该系统模拟存货处理气相和液相分开。
两阶段相联系,通过蒸发,冷凝, 传热和疏散(用于排污模拟) 。那个整个系统联系在一起,以一个多物理模拟。
见[ 1 ]和[ 2 ] 。 图4显示了仪器的测试标本(测试对象) 。墙上的标本12.5毫米thick.The温度测量了1.5毫米热要素Ktype 。该位置如图所示。在一些实验水注入标本和煮干。 一些测试进行了不同的热负荷和不同的灌装水内的标本。这些报告[ 5 ] [ 6 ] 。在这三起案件的介绍将提交。 模拟已用VessFire 。这是一个
系统模拟火灾反应的工艺设备。
它模拟热传导和执行的应力计算
3维壳牌。同时该系统模拟存货处理气相和液相分开。
两阶段相联系,通过蒸发,冷凝, 传热和疏散(用于排污模拟) 。那个整个系统联系在一起,以一个多物理模拟。
见[ 1 ]和[ 2 ] 。

VessFire是假设接触火焰在kW/m2 。印第安纳州

一般的流量可以在不同时间和空间,但在这种情况下,

热负荷是恒定的空间。热流包括

辐射热和对流换热和的定义是净

通量转移到暴露对象,而对象是在其

初始条件。图14 ,图17和图20显示

适用于热负荷VessFire对不同的情况。负载

同时发现的平均测量温度加热铝箔和适用斯蒂芬一玻耳兹曼定律。仿真承担库存气层最初充满空气, 78 % N2和22 %氧气。该发射率的标本被设置为0.7 。

图15 ,图18和图21显示的结果
测量和计算存货温度。何时热电偶用来衡量气体温度有一个
具有影响力的风险从周围的温度。印第安纳州这种情况下,包围钢发光,显然影响热电偶辐射。这是一般来说问题和应注意的时候公布结果。那个影响可能相当强劲,估计在这里使用计算气体温度来计算相应的热电偶温度。的数字,这是所谓的“钙。 气温。热电偶“ 。计算是逐步使用包括: (此处一个公式)凡ΔT场是在温度升高的时间ΔT场,山是大众每平方米和CP的比热的热电偶(镍) 。对流换热的计算公式为(此处一个公式)凡在是面积每平方米的热电偶和Tl和TT的温度天然气和热电偶分别。 λ是导热系数为实际气体和DT是外径热电偶。 Nu和再保险公司各自的努塞尔和雷诺数。

VessFire是假设接触火焰在kW/m2 。印第安纳州

一般的流量可以在不同时间和空间,但在这种情况下,

热负荷是恒定的空间。热流包括

辐射热和对流换热和的定义是净

通量转移到暴露对象,而对象是在其

初始条件。图14 ,图17和图20显示

适用于热负荷VessFire对不同的情况。负载

同时发现的平均测量温度加热铝箔和适用斯蒂芬一玻耳兹曼定律。仿真承担库存气层最初充满空气, 78 % N2和22 %氧气。该发射率的标本被设置为0.7 。

图15 ,图18和图21显示的结果
测量和计算存货温度。何时热电偶用来衡量气体温度有一个
具有影响力的风险从周围的温度。印第安纳州这种情况下,包围钢发光,显然影响热电偶辐射。这是一般来说问题和应注意的时候公布结果。那个影响可能相当强劲,估计在这里使用计算气体温度来计算相应的热电偶温度。的数字,这是所谓的“钙。 气温。热电偶“ 。计算是逐步使用包括: (此处一个公式)凡ΔT场是在温度升高的时间ΔT场,山是大众每平方米和CP的比热的热电偶(镍) 。对流换热的计算公式为(此处一个公式)凡在是面积每平方米的热电偶和Tl和TT的温度天然气和热电偶分别。 λ是导热系数为实际气体和DT是外径热电偶。 Nu和再保险公司各自的努塞尔和雷诺数。
第3个回答  2009-03-15
图4显示了仪器的测试样本(测试
对象)。墙上的标本是12.5毫米厚的. 温度测量的Ktype thermo-elements 1.5毫米。如图所示的位置。在一些实验水注入到标本和水煮干。
几个试验与不同的热负荷及
不同的水流填充的标本。这些发表在[5]和[6]。在这次讲座中三个案例中,将会呈现。
模拟已经用VessFire。这是一种
仿真系统的响应的工艺设备。火它
模拟计算传热学、表演的压力
3-dimesional壳。同时系统模拟
存货,它把气相、液相另行规定。
这两个阶段与蒸发、冷凝,
传热和疏散(排污模拟)。这个
整个系统是联系在一起的一个方案仿真。
看到[1]和[2]。
VessFire承担暴露在火焰中千瓦/平方米。在
一般的流量可以改变在时间和空间,但在这种情况下的
热负荷是恒定的空间。这个热流包括
辐射热和对流换热及被定义为网络
流量转移到接触物体的对象是在它的
初始条件。如图14、图17图20显示
VessFire热负荷应用于不同的情况。负载
发现平均温度的测量的应用Stefan-Boltzmann加热箔片和律法。仿真假设库存天然气区域起初是充满空气、氮气、氧气22%的78%。标本的发射率将0.7。
图15日18和图21展示人物的结果
测量和计算的存货的温度。当
热偶是用来测量气体的温度都有一个
有影响力的风险与周围的温度。在
这种情况下,围绕在发光和有明显的效果
反辐射的影响。这是在大会
应该注意的问题,结果发表。这个
可以很强烈的影响,在这里,利用了
燃气温度的计算来计算一个相应的
热电偶温度。在数字这被叫做“钙质。
temp.热电偶”。这个计算是逐步由使用
(此处一个公式)的ΔT是温度升高时,太是人民大众ΔT每米,cp比热为热电偶(Inconel)。对流传热计算为(此处一个公式)在的面积是每米、热电偶温度组合成的Tl和航天气、热电偶respectively.λ被导热系数为实际的气体及dt的外径热电偶。怒和稀土是各自的Nusselt与雷诺数。
问题补充:净辐射传热计算为(此处一个公式)的面积是为每米,εt寄样品的热= 0.3率(Inconel),εs = 0.7的发射率为样本里面的Stefan-Boltzmann和σ恒温黑色的辐射。Ts是样品温度在里面。
在校正估计问题,提出一种想法,但是它的大小的影响,从样品的热表面。
图16、图19图22间的比较表明钢温度测量计算。他们还表示时间的水蒸发。钢温度保持不变的标本,只要有水的礼物。当钢干燥温度迅速增加。从数字沸腾的时间是相当不错的,所以是预测钢温度。