初一下册期中数学题

希望得到一些较难的题目,越多越好,拜托了!

一. 填空题:(每题2分,共30分)
1.如果∠A=23°34′,∠B=71°45′,∠A+∠B=___°___′.
2.直线外一点与直线上各点所连结的线段中,_________最短.
3.如图1,在长方体中,与棱AD垂直的平面
有___________________________.
4.如图2,当∠_____=∠_____时,
AD‖BC ( )
5.如图3, AB‖CD, ∠2比∠1的
2倍多6°, 则∠2=_______.
6.命题“对顶角相等”的题设是:_________________,
结论是____________________.
7.当x_________时,代数式1-3x的值为非负数.
8.
9.用科学记数法表示:0.000602=_________.
10.
11.
12.当________时, (2a+1)0=1.
13.计算: (a+2)(a-2)(a2-4)=_____________.
14. 如图4,D是AC的中点,AD=3,
15.若
二. 选择题:(每题2分,共20分)
16.下列的命题中,是真命题的是 ( )
(A)在所有连结两点的线中,直线最短.
(B)两直线被第三直线所截,同位角相等.
(C)不相交的两条直线,叫做平行线.
(D)两条直线都和第三条直线垂直,则这两直线互相平行.
17.如图5,AB‖DE,∠B=120°,∠D=25°,则∠C= ( )
(A) 50° (B) 80° (C) 85° (D) 95°
18.两条平行线被第三条直线所截,则一组同旁内角的角平分线互相 ( )
(A)垂直 (B)平行 (C)重合 (d)相交,但不垂直
19. 如图6,若∠1=∠2,则错误的结论是 ( )
(A)∠3+∠4=180° (B)∠5=∠4
(C) ∠5=∠7 (D)∠6+∠7=180°
20.已知AB‖CD,CD‖EF,则AB‖EF.这个推理的根据是 ( )
(A)平行公理 (B) 等量代换 (C)内错角相等,两直线平行
(D)平行于同一直线的两条直线平行
21.若∠A和∠B的两边分别平行且∠A比∠B的两倍少30°,则∠B是( )
(A) 30° (B) 70° (C) 30°或70° (D)100°
22.下列等式中,错误的是 ( )
(A)(a-b)2=(b-a)2 (B)(a+2b)2=a2+4b2
(A)(-a-b)2=(a+b)2 (D)(a+b)2-(a-b)2=4ab
23.如图7是L形的钢条截面,它的截面面积是 ( )
(A)ct+st (B)ct+st-t2 (C)ct+st-2t2 (D)以上都不对
24.下列运算中,正确的是 ( )
(A)(3a6b)2=6a12b2 (B)(8a2b-6ab2)÷2ab=4a-3b
(C) (D)(X-2Y)(2y-x)=x2-4xy+4y2
25.若-1<x<0,则代数式x(1+x)(1-x)的值 ( )
(A)一定是正的 (B)一定是负的 (C)一定是非负的 (D)正负不能确定
三. 解答题:(每题5分,共35分)
26.计算: (3m-2n)(2n+3m) 27.计算:(a-3)(a2+3a+9)

28.已知:|2x+y-11|+(5x-4y-8)2=0,求xy的值.

29.计算:(3x2-2x+1)(3x2+2x-1)

30.计算:(-2xay)2·(xa-2ya)4÷[(-xy2)2]a

31.计算: (m-3n)2-(3n+m)2

32.若x+y=2,xy=k+4,(x-y)2=12,求k的值.

一、选择题(每小题2分,共20分)
1.方程 的解是( )
(A) x=0 (B) x=1 (C)x=2 (D)x=3
2.解为x=4的方程是( )
(A) 7x=3x-4 (B) 2x+1=3-x (C) 2(3-x)=-2 (D)
3.x=1时方程3x-m+1=0的解,则m的值是( )
(A) -1 (B) 4 (C) 2 (D) -2
4.若代数式4x-7与代数式5(x+ )的值相等,则x的值是( )
(A) -9 (B) 1 (C) -5 (D) 3
5.如果2x-7y=8,那么用y的代数式表示x正确的是( )
(A) (B) (C) (D)
6.解为 的方程组是( )
(A) (B) (C) (D)
7.如果单项式xm+2ny与x4y4m-2n是同类项,则m、n的值为( )
(A) m=-1,n= (B) m=1,n= (C) m=2,n=1 (D) m=-2,n=-1
8.用加减法解方程组 时,(1)2-(2)得( )
(A) 3x=-1 (B) -2x=13 (C) 17x=-1 (D)3x=17
9.一件羽绒服降价10%后售出价是270元,原价的60%是其成本,则它的成本是( )
(A) 300元 (B) 290元 (C) 280元 (D) 180元
10.如果三角形的一个外角小于和它相邻的内角,那么这个三角形是( )
(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不能确定
二、填空题(每小题2分,共20分)
11.方程1.8x-4.8=0的解是 .
12.已知3m-5=4,则m2+m= .
13.方程 去分母得 .
14.方程组 的解是 .
15.某数的 加上5与它的2倍减去9相等,设某数为x,列方程得 .
16.已知三角形的两边长为2cm和7cm,第三边的数值为奇数,则这个三角形的周长为 .
17.买5本练习本和2支笔共花了23.9元,一支笔是3.2元,则每本练习本 元。
18.如果|x-2|+(x-y+3)2=0,那么(x+y)2= .
19.A、B两地相距a千米,甲每小时走5千米,以每小时走7千米,两人分别从A、B两地同时出发,相向而行, 小时相遇.
20.有一些苹果箱,若每只装苹果25千克,则剩余40千克苹果无处装,若每只装30千克,又余下20只空箱,这些苹果箱有 只.
三、解方程(或方程组)(21~23小题每小题4分,24~26小题每小题6分,共30分)
21.3x-2=5x+6

22.

23.

24.

25.

26.

四、解答题(每题5分,共10分)
27.解方程组 一般是先把原方程组化简为
然后再用代入法或加减法解,此外,还有更简便的方法吗?如有,请解之.

28.如图,在△ABC中,AD是角平分线,∠B=660,∠C=540,求∠ADB和∠ADC的度数.

五、列方程或方程组解应用题(每小题7分,共14分)
29.小强三天共自学了60页书,第二天比第一天多学了4页,第三天自学的页数是第一天的2倍,为小强三天各学了多少页书?

30.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批货物共524吨,用10节火车车厢和6辆汽车正好装完.求每节火车车厢和每辆汽车平均各装多少吨?
温馨提示:答案为网友推荐,仅供参考
第1个回答  2010-05-03
初一下数学不等式应用题汇总
例1、 甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。顾客怎样选择商店购物能获得更大优惠?
首先考虑一下:
甲商店优惠方案的起点为购物款达 元后;
乙商店优惠方案的起点为购物款达 元后
(1)现在有4个人,准备分别消费40元、80元、140元、160元,那么去哪家商店更合算?为什么?
(2)如果累计购物超过100元,那么在甲店购物花费小吗?
(3)累计购物超过100元而不到150元时,在哪个店购物花费小?累计购物恰好是150元时,在哪个店购物花费小?
(4)根据甲乙商店的销售方案,顾客怎样选择商店购物能获得更大优惠?你能为消费者设计一套方案吗?
解:设累计购物X元(X>100),如果在甲店购物花费小,则
50+0.95(X-50)>100+0.9(X-100)
得 X>150
答:累计购物超过150元时在甲店购物花费小
例2、某班同学外出春游,需拍照合影留念;若一张底片需0.57元,冲印一张需0.35元,每人预定得到一张而且出钱不超过0.45元,问参加合影的同学至少有几人?
答案(不是唯一的,仅作参考)及评分标准:
解:设参加合影的同学至少有X人,根据题意,得:……… 1分
0.57 + 0.35 X ≥ 0.45X……… 2分
解这个不等式,得:X≥5.7 因为参加的人数只能是整数,所以参加的人数至少是6人。……… 1分
答:参加合影的同学至少有6人。……… 1分
例3、某服装厂现有A种布料70米、B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号时装需要用A种布料0.6米、B种布料0.9米,可获利润45元,做一套N型号的时装需要用A种布料1.1米、 B种布料0.4米,可获利润50元,请你设计最佳方案。
分析:我们可以将问题转化为一元一次不等式组的问题来求解。
(参考解:设生产N型号的时装套数为x,用这批布料生产这两种型号的时装 所获的总利润为y元,根据题意
0.6(80-x)+1.1x≤70,
0.9(80-x)+0.4x≤52
∴ 40≤x≤44;
∵x的取值范围是40、41、42、43、44,又y=50x+45(80-x),即y=5x+3600。
由观察知:当x=44时,y有最大值,最大值为5x44+3600=3820,即当N型号的时装为44套时,所获利润最大,最大利润为3820元
例4、某学校需刻录一批教学用的VCD光盘,若电脑公司刻录,每张需9元(包括空白VCD光盘费);若学校自刻,除租用刻录机需120元外,每张还需成本4元(包括空白VCD光盘费)。问刻录这批VCD光盘,到电脑公司刻录费用省,还是自刻费用省?请说明理由。
教师:同学们仍然分组讨论交流。
设需刻录x张VCD光盘,则到电脑公司刻录需9x元,自刻需要(120+4x)元。
当9x>120+4x时,即x>24时,自刻费用省。
当9x=120+4x时,即x=24时,到电脑公司与自刻费用一样。
当9x<120+4x时,即x<24时,到电脑公司刻录费用省。
例5、一个长方形足球场的长为xm,宽为70m;如果它的周长大于350m,面积小于7560,求x的取值范围,并判断这个球场是否可以用作国际足球比赛o
(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间)
参考解:依据长方形的周长和面积公式,得
2(x+70)>350, ①
70x < 7560 ②
解:①得x>105,解②得x<108.
∴ 105<x<108.
根据国际比赛足球场的要求,该球场可以用作国际足球比赛。
例6、假如你是一位具有环境意识的企业家,决策者,你该怎么办?
为了保护环境,某企业决定购买10台污水处理设备,现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
A型 B型
价格(万元/台) 12 10
处理污水量(吨/月) 240 200
年消耗费(万元/台) 1 1
经预算,该企业购买设备的资金不高于105万元o
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案。
分析:如果设购买A型污水处理设备x台,则购买B型设备为(10-x)台,那么可以用含x的代数式表示购买设备的资金总额为12x+10(10-x)万元。“不高于”即为“≤”,可列出不等式来解。
解:(1)设购买A型污水处理设备x台,则购买B型设备(10-x)台,由题意知
12x+10(10-x)≤105,x≤2.5
∵x取非负整数,∴x可取0、1、2.
∴有三种不同购买方案,购A型0台,B型10台;购A型1台,B型9台; 购A型2台,购B型8台。
(2)由题意得240x+200(10-x)≥2040.
解得 x≥l
∵x≥l,∴x取l或2.
X=1时,购买资金为 12xl+10x9=102(万元);
当x=2时,购买资金为 12x2+10x8=104(万元)o
∴为了节约资金,应选购A型1台,B型9台。
1、用不等式表示:
1)b不是正数: ; b是非负数: ;
x的一半小于-1 : ;y与4的和大于0.5: 。
(2)x的2倍大于x: (3)y的与3的差是负数:
(4)3Y与7的和的四分之一小于-2
(5)a与b的差是非负数:
2、a取什么值时,代数式4a+2的值:
(1)大于1? (2)等于1? (3)小于1?

3、学校举行的“我与法”的知识竞赛中共有20道题.对于每一道题,答对了得10分,答错或不答扣5分.至少要答对几道题,其得分不少于80分? (列出算式,不要求求解)
你能解决吗?分组讨论.
分析:列表如下
答对 答错或不答
题数(道) X
每道题分数(分)
总得分(分)
根据上列分析可列出不等式为:_________________________---80.

4、一个工程队原定10天内至少要挖掘600m的土方,在前两天共完成了120m后,又要求提前2天完成挖掘土方任务,问以后几天内,平均每天至少要挖掘多少土方?(列出算式,不要求求解)。
前两天 后六天 原定
挖土天数(天) 22222 2 6 10
平均每天挖土(m3) 60 X
挖土方数(m3) 120
根据列表分析可列出不等式为__________________≥600.

5、某园林的门票每张10,一次使用。考虑到人们的不同需求,也为了吸收更多的少游客,该园林除保留原有的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年)。年票分A、B、C三类:A类年票每张120元,持票者是入该园林时,无需再购买门票;B类门票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类门票每张40元,持票者进入该园林时,需再购买门票,每次3元。(1)如果您只选择一种购买门票的方式,并且您计划在一年中花80元在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。

6.某单位计划在新年期间组织员工到某地旅游,参如旅游的的人数估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家
旅行社支付的旅游费用较少?

7.有10名菜农,每人种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元。若要使菜农的总收入不低于15.6万元,则最多只能安排多少人种甲种蔬菜?

8、小兰准备用30元买钢笔和笔记本,已知一支钢笔4.5元,一本笔记本3元。
(1)她买了5本笔记本,则她最多还可以买多少支钢笔?
(2)钢笔和笔记本共8件,则她最多可以买多少支钢笔?
(3)如果她钢笔和笔记本共买了8件,则她有多少种购买方案?

9、学生若干人,住若干宿舍,如果每间住4人,那么还有18人没有宿舍住;如果每间住6人,那么有一间宿舍没住满,求该校住宿人数和宿舍间数。

10、 甲.乙两家商店出售同样的茶壶和茶杯,茶壶每只定价都是20元,茶杯每只定价都是5元.两家商店的优惠办法不同:甲商店是购买1只茶壶赠送1只茶杯;乙商店是按售价的确92%收款.某顾客需购买4只茶壶.若干只(超过4只)茶杯,去哪家商店购买优惠更多?


11、某工程队计划在10天内修路6千米,施工前2天修完1.2米后,计划发生变化,准备提前2天完成修路任务,以后几天平均每天至少要修路多少千米?
第2个回答  2019-02-04
解:
A+B-1
=
0

A-B+2
=0

A=-0.5
B
=
1.5

22A
+
2B
+7
=
22
*
(-0.5)
+
2
*
1.5
+
7
=-11
+3
+7
=
-1
立方根为本-1.
第3个回答  2019-10-05
a+b-1=0
a-b+2=0
解方程组
a=-1/2
b=3/2
当a=1/2,b=3/2时,
(22a+2b+7)的立方根
=(22×-1/2+2×3/2+7)的立方根
=(-11+3+7)的立方根
=-1的立方根
=-1
第4个回答  2010-05-15
自己找