函数有界一定有极限吗?

如题所述

1、有极限就一定有界

回忆极限定义,任取ε>0,存在N>0,当n>N时,有|xn-a|<ε

证:设数列{xn}的极限a,则由极限定义,对于ε=1,存在N>0,当n>N时,(N是个有限数)

有|xn-a|<1,则 |xn|=|xn-a+a|≤|xn-a|+|a|<1+|a|

取M=max{ |x1|,|x2|,...,|xN|,1+|a| }

则我们会发现,所有的 |xn|<M,(因为M=max{ |x1|,|x2|,...,|xN|,1+|a| },因此M比数列中前N个数的绝对值都要大,当n>N后,所有的 |xn| 均小于1+|a|≤M)

因此{xn}有界。

2、有界不一定有极限

比如:f(x)=sinx,在R上有界,但是x趋近于无穷是没有极限。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。

扩展资料:

极限的产生

与一切科学的思想方法一样,极限思想也是社会实践的大脑抽象思维的产物。极限的思想可以追溯到古代,例如,祖国刘徽的割圆术就是建立在直观图形研究的基础上的一种原始的可靠的“不断靠近”的极限思想的应用;古希腊人的穷竭法也蕴含了极限思想,但由于希腊人“对’无限‘的恐惧”,他们避免明显地人为“取极限”,而是借助于间接证法——归谬法来完成了有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中,改进了古希腊人的穷竭法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。

建立的概念

极限的思想方法贯穿于数学分析课程的始终。可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:

1、函数在 点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。

2、函数在 点导数的定义,是函数值的增量 与自变量的增量 之比 ,当 时的极限。

3、函数在 点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。

4、数项级数的敛散性是用部分和数列 的极限来定义的。

5、广义积分是定积分其中 为,任意大于 的实数当 时的极限,等等。

参考资料来源:百度百科-极限

温馨提示:答案为网友推荐,仅供参考