arctanx的极限是多少?

如题所述

0。

解析:

当x趋向于无穷大时arctanx趋向于±π/2;x趋向于无穷大时,极限就是0。

limarctanx/x(x趋进于0)的极限有三种情况:

1、x→0时:lim arctanx/x,运用罗必塔法则:=lim (arctanx)'/x'=lim =1。

2、x→a时lim(sinx-sina)/(x-a)时:lim(sinx-sina)/(x-a) =lim{2cos*sin/2]}/(x-a) =2cosalim{sin/2]}/(x-a) =cosa*lim{sin/2]}/ =cosa*1 =cosa。

3、lim(x/sinx)=lim =1/lim =1/1 =1。

简介

极限的思想是近代数学的一种重要思想,数学分析就是以极限概念为基础、极限理论(包括级数)为主要工具来研究函数的一门学科。

所谓极限的思想,是指“用极限概念分析问题和解决问题的一种数学思想”。

用极限思想解决问题的一般步骤可概括为:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜