垃圾焚烧厂垃圾渗滤液处理工艺设计

需要CAD图,最好是实际的设计图,估计垃圾焚烧厂一般不会建这个设施,垃圾填埋场的也可以。
实际应用的。
QQ 244746618 谢谢

通过对垃圾焚烧厂和垃圾填埋厂垃圾渗滤液的特点比较,确定UASB反应器-CASS反应器复合工艺处理垃圾焚烧厂渗滤液,确定其最佳处理参数。结果表明,通过该系统处理后,CODcr总去除率达98.1%,NH4-N总去除率达96.3%,去取得较好的去除有机物和脱氮效果。
关键词:垃圾渗滤液UASB反应器CASS反应器
1、引言
随着经济技术的发展和城市化进程的加快,传统的城市生活垃圾填埋处理受到越来越多的限制,根据城市生活垃圾处理无害化、减量化和资源化的基本原则,垃圾焚烧发电已成为近年来解决城市生活垃圾出路的一个新方向。目前国内对垃圾渗滤液处理工艺的研究大多停留在垃圾填埋厂渗滤液处理阶段。由于垃圾焚烧发电厂垃圾渗滤液与垃圾填埋厂渗滤液特点的差异,因而不能简单的套用。
2、垃圾焚烧发电厂垃圾渗滤液与垃圾填埋厂渗滤液的特点及比较
宁波枫林绿色能源开发有限公司(宁波垃圾焚烧发电厂)垃圾渗滤液与宁波某垃圾填埋厂垃圾渗滤液的水质特点见表一。
2.1CODcr和BOD5
填埋厂垃圾渗滤液中CODcr平均浓度多在2500~5000mg/L左右,BOD5平均浓度多在1450~2000mg/L左右,BOD5/CODcr为0.50左右,可生化性一般。由于垃圾填埋厂一般是在露天,其污染物浓度受雨水影响较大,变化也较大。一般而言,CODcr、BOD5、BOD5/CODcr随填埋厂的‘年龄’增长而降低,碱度含量则升高。
焚烧厂垃圾渗滤液中CODcr平均浓度高达10000~20000mg/L,BOD5平均浓度高达3800~5000mg/L,浓度相当高,焚烧厂垃圾渗滤液属原生渗滤液,大多是当天的垃圾渗滤液,未经厌氧发酵、水解、酸化过程,内含如苯、萘、菲等杂环芳烃化合物、多环芳烃、酚、醇类化合物、苯胺类化合物等难降解有机物。受雨水影响较填埋厂垃圾渗滤液小。BOD5/CODcr为0.38左右,较填埋厂垃圾渗滤液可生化性更差。
2.2氨氮含量高,重金属含量高
焚烧厂垃圾渗滤液中氨氮含量高,可生化性较差,常给生化处理带来一定的难度,采用厌氧处理后,渗滤液中一些难降解有机物被酸化水解成易于生化的小分子化合物,氨氮含量随着苯胺类化合物等的分解还会有一定程度的升高。垃圾渗滤液中铁、铅、锌、钙的浓度均较高,采用一套合适的工艺对处理效果致关重要。
3、处理工艺
我国现有城市垃圾填埋厂的垃圾渗滤液多采用厌氧加好氧生物处理工艺。据调查,已建成的渗滤液污水处理场普遍存在运行效果差现象。究其原因有两点:1、渗滤液进入污水处理场之前已经历了较长时期的厌氧发酵过程,再使用厌氧水解、酸化工艺已不适用。2、渗滤液中氨氮含量高,若采用一般活性污泥法处理工艺,不但降解氨氮效果较差,还存在污泥培养不起来或者培养好的污泥难以维持的现象。
综合我国垃圾填埋厂的垃圾渗滤液处理工艺及焚烧厂垃圾渗滤液的特点,我们采用如下工艺进行研究。
3.1工艺流程
工艺流程见图1
3.2工艺说明
垃圾渗滤液经过细格栅后,除去渗滤液中的悬浮物及漂浮物,进入调节池,经泵提升至UASB上流式厌氧反应器进行厌氧发酵,产生的沼气接至垃圾焚烧炉助燃,污泥脱水后填埋或焚烧,出水加CaO调碱度后自流进入CASS反应器。CASS是一种具有较好的脱氮除磷功能的循环间歇处理工艺,整个系统经历进水期、反应期、沉淀期、排水期和待机期5个阶段,而CASS反应器又分为三个区:一区为生物选择器,二区为兼氧区,三区为好氧区。出水流经生物选择器区,既可提高系统的稳定性,防止产生污泥膨涨,又可发生比较显著的反硝化作用。出水自生物选择器进入兼氧区和好氧区,该区主要完成降解有机物和硝化/反硝化过程。再经沉淀期后外排。
4、试验部分
4.1试验方法
采用如图1的工艺流程在实验室小试。UASB反应器采用一聚氯乙烯柱改制,上设三相分离器,容积为5L。CASS反应器采用一长方形聚氯乙烯池,内设挡板,容积为5L。
4.2试验用水
取自宁波垃圾焚烧厂垃圾渗滤液池出水,出水水质情况见表2。从表2可知,废水BOD5/CODcr=0.335,可生化性较差。
4.3菌种的筛选及驯化
UASB反应器与CASS反应器内污泥分别取自宁波市污水处理厂厌氧池及好氧池污泥。驯化时先将垃圾渗滤液与生活污水逐步按1:10、1:6、1:3、1:1、2:1、4:1的比例配制成混合水进行阶梯式驯化污泥,直至进水全部为垃圾渗滤液,投入正常试验。在试验开始前,我们将CASS反应器内的活性污泥进行为期3个月的培养和驯化期,以驯化筛选和培养活性污泥中的高效脱氮菌,这是本工艺的关键。由于长期驯化的结果,CASS反应器内可以忍受1000mg/L以上的高氨氮浓度进水,同时可以忍受重金属所带来的毒性。4.4分析项目和方法
CODcr、BOD5、NH4-N和污泥浓度按《水和废水监测分析方法(第三版)》进行。
5、试验结果与讨论
5.1UASB厌氧反应器试验结果
结果表明,当污泥浓度为7.5g/L,停留时间为48H时,CODcr去除率最高可达75.5%,BOD5去除率为56.5%,NH4-N浓度由于苯胺类化合物的分解有所增加。当容积负荷Nv达到5.0g/L.d后,产气量明显增多,由于产气量增多导致泡振、混掺现象使污泥处于一种很好的动态混合状态。由于UASB反应器的酸化水解,BOD5/CODcr值明显改善,有利后续的生化处理。
UASB厌氧反应器出水见表3
5.2CASS反应器试验结果
我们根据CASS反应器内各因素对CODcr及NH4-N去除率的影响,确定沉淀时间、排水排泥时间、待机时间及反应期间PH,改变反应时间及污泥浓度,以确定CODcr及NH4-N的最佳去除效果。
5.2.1PH值的确定
硝化反应是一个好碱过程,平均每硝化1mgNH4-N需要7.07mg碱度(以CaCO3计),硝化反应最适PH=7.5~8.5。因而在本实验中未作进一步研究,在废水中加CaO调节PH,控制CASS反应器内PH范围在7.5~8.5之间。
5.2.2反应时间对CODcr及NH4-N去除率的影响
在各影响因素中,反应时间为主要运行参数,反应时间的增加有利于CODcr和NH4-N的去除,根据程洁红等对SBR法处理垃圾填埋厂垃圾渗滤液的研究,在本试验中,暂定污泥浓度为5g/L时,改变反应时间来检验CODcr及NH4-N去除率,结果见表4
表4结果表明,在污泥浓度为5g/L,闲置时间6h,PH=8.0的条件下,最佳反应时间为36h,CODcr去除率为89.5%,NH4-N去除率为95.2%。
5.2.3污泥浓度对CODcr及NH4-N去除率的影响
根据表4的试验结果,确定反应时间36h,闲置时间6h,PH=8.5的条件下,改变污泥浓度来观察CODcr及NH4-N的去除率,选定污泥浓度为3.5g/L、5.0g/L、6.5g/L和8.0g/L作为试验参数。结果见表5。
从表5可以看出,污泥浓度为8.0g/L时,CODcr去除率最高,污泥浓度为6.5g/L时,NH4-N去除率最高,这说明污泥浓度的增加虽然能提高CODcr去除率,但随之溶解氧的需要量增加,而污泥量的增加使氧的传质困难,不能满足活性污泥的正常生长代谢的需要,处理效果反而不会提高。
6结论
(1)采用UASB厌氧反应器-CASS反应器工艺经试验得到以下运行参数:
UASB厌氧反应器;。污泥浓度为7.5g/L,停留时间为48H。
CASS反应器:反应时间36h,闲置时间6h,PH=8.0,污泥浓度为6.5g/L。
(2)垃圾渗滤液经上述工艺处理后的数据见表6。在最佳运行条件下,原垃圾渗滤液的CODcr和NH4-N分别从10000mg/L和510mg/L降到191.1mg/L和18.88mg/L,CODcr总去除率为98.1%,NH4-N总去除率为96.3%。表明该工艺可较好的处理焚烧厂垃圾渗滤液。追问

我需要CAD图纸
渗滤液处理的部分

追答

呵呵,这个我就不行了,你找专业搞的吧,呵呵,看在我打字这么多,给采纳吧

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-09-12
  垃圾焚烧发电厂渗滤液综合处理多采用生物法,其处理本钱低,现在已成为废物渗滤液处理的主体工艺,下面我们就一起了解一下垃圾焚烧发电厂渗滤液处理工艺之物化法的工作原理。
  物化法处理废物渗滤液包含混凝沉积、氨吹脱、吸附、膜分离和化学氧化法等。混凝沉积首要是用Fe3 + 或Al3 + 作混凝剂去除有机物;
氨吹脱首要是去除废物渗滤液中的氨氮,但氨吹脱仅实现了污染物的转移即氨氮只是从水中转移到大气中,而不是从根本上去除污染物。
  用混凝与吸附联合的办法对废物填埋场渗滤液进行预处理的研讨结果标明,该办法对废水COD
的去除率安稳在70%左右,且受水质改变的影响不大。膜分离法一般是运用反渗透(RO)
技能,但其处理本钱一般较高。化学氧化法有湿式氧化或催化氧化、Fenton、电化学法等多种办法。
  与生物法比较,物化法具有不受进水水质水量影响,处理工艺能承受较大的冲击负荷,出水水质相对安稳等长处。特别是对BOD5 /COD 比值较低(
0.07~0.20) 的较难生物降解的成分有较好的处理作用( 对COD 去除率可达50%~87%)。
第2个回答  2019-08-15
(1)处理垃圾范围广泛,能够处理工业垃圾、生活垃圾、医院垃圾废弃物、废弃橡胶轮胎等。
(2)燃烧热效率高,正常燃烧热效率80%以上,即使水份很大的生活垃圾,燃烧热效率也在70%以上。
(3)运行维护费用低,由于采用了许多特殊的设计以及较高的自动化控制水平,因此运行人员少(包括除灰渣人员在内一台炉仅需两人),维护工作量也较少。
(4)可靠性高,经过近20年运行表明,此焚烧炉故障率非常低,年运行8000小时以上,一般利用率可达95%以上。
(5)排放物控制水平高,由于采用二级烟气再燃烧和先进的烟气处理设备,使烟气得到了充分的处理。
(6)炉排在压缩空气的吹扫下,有自清洁功能。
第3个回答  2019-10-15
1、检查各电气线路是否处于准备工作状态,接线方式是否正确。如发现异常应及时修正,确保安全。
2、检查风机油位是否正常,转动是否灵活,地脚螺栓有无松动,开机前必须将润滑油加至标准油位,地脚螺栓必须紧固,用手转动风机应无沉重感及异常响动,风机转动方向必须与运行方向一致。
3、保证水泵转动灵活,无异常影响正常运转的隐患,如果发现及时排除。
4、查各阀门是否完好,开启必须灵活。
5、曝气管道必须处于同一水平面,检查填料是否有脱落,如有脱落应及时补齐。
第4个回答  2019-08-19
1、采用“生化+物化”工艺处理垃圾渗滤液,其中生化处理的过程能够有效地降解、消除污染物,但是由于收到不可生化降解残余存在的限制,一般处理后的废水仅能够达到(GB16889-1997)的三级排放标准。
2、直接采用“高压膜分离“工艺处理垃圾渗滤液,膜分离处理过程能够对水与污染物进行有效地分离,可以达到(GB16889-1997)的一级排放标准,但是由于膜分离处理不能够降解、消除污染物,相应地会产生大量更难处理的浓缩废水。
3、采用“生化+物化+膜分离“工艺技术处理垃圾渗滤液,可以达到(GB16889-1997)的一级排放标准。其中,生化处理能够有效地降解、消除污染物,膜分离处理过程能够有效地分离去除不可生化降解的残余污染物,但同时也会产生浓缩废水。