高数中8个常用等价无穷小是什么?

如题所述

高数中8个常用等价无穷小:

sinx~x 、tanx~x 、arcsinx~x 、arctanx~x。

1-cosx~(1/2)、(x^2)~secx-1 、(a^x)-1~x*lna ((a^x-1)/x~lna) 、(e^x)-1~x 、ln(1+x)~x 。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0。被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

数学分析的基础概念。它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。

极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念,连续、微分、积分和级数)都是建立在极限概念的基础之上。

然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.,首先较为明确地给出了极限的一般定义。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜