卡诺循环(Carnot cycle) 是只有两个热源(一个高温热源温度T1和一个低温热源温度T2)的简单循环。由于工作物质只能与两个热源交换热量,所以可逆的卡诺循环由两个等温过程和两个绝热过程组成。 [1]
卡诺循环是由法国工程师尼古拉·莱昂纳尔·萨迪·卡诺于1824年提出的,以分析热机的工作过程,卡诺循环包括四个步骤: 等温吸热, 绝热膨胀,等温放热,绝热压缩。即理想气体从状态1(P1,V1,T1)等温吸热到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温放热到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。这种由两个等温过程和两个绝热过程所构成的循环称为卡诺循环
卡诺循环包括四个步骤:等温吸热,在这个过程中系统从高温热源中吸收热量; 绝热膨胀,在这
个过程中系统对环境作功,温度降低; 等温放热,在这个过程中系统向环境中放出热量,体积压缩; 绝热压缩,系统恢复原来状态,在等温压缩和绝热压缩过程中系统对环境作负功。卡诺循环可以想象为是工作于两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2。这一概念是1824年N.L.S.卡诺在对热机的最大可能效率问题作理论研究时提出的。卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、摩擦等损耗。为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。因限制只与两热源交换热量,脱离热源后只能是绝热过程。作卡诺循环的热机叫做卡诺热机。
卡诺循环的效率
通过热力学相关定理我们可以得出,卡诺循环的效率ηc=1-T2/T1,由此可以看出,
卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。
卡诺循环效率一致
可以证明,以任何工作物质作卡诺循环,其效率都一致;还可以证明,所有实际循环的效率都低于同样条件下卡诺循环的效率,也就是说,如果高温热源和低温热源的温度确定之后卡诺循环的效率是在它们之间工作的一切热机的最高效率界限。因此,提高热机的效率,应努力提高高温热源的温度和降低低温热源的温度,低温热源通常是周围环境,降低环境的温度难度大、成本高,是不足取的办法。现代热电厂尽量提高水蒸气的温度,使用过热蒸汽推动汽轮机,正是基于这个道理。
提高热机效率的方向
卡诺定理阐明了热机效率的限制,指出了提高热机效率的方向(提高T1,降低T2,减少散热、漏气、摩擦等不可逆损耗,使循环尽量接近卡诺循环)。成为热机研究的理论依据、热机效率的限制。实际热力学过程的不可逆性及其间联系的研究,导致热力学第二定律的建立。在卡诺定理基础上建立的
与测温物质及测温属性无关的绝对热力学温标,使温度测量建立在客观的基础之上。此外,应用卡诺循环和卡诺定理,还可以研究表面张力、饱和蒸气压与温度的关系及可逆电池的电动势等。还应强调,卡诺这种撇开具体装置和具体工作物质的抽象而普遍的理论研究,已经贯穿在整个热力学的研究之中。