大一,高数,定义法求数列极限,详细一点谢谢

如题所述

    证明:对任意的ε>0,解不等式│√(n+1)-√n│=1/[√(n+1)+√n]<1/(2√n)<ε,

              得n>1/(4ε^2),则取正整数δ=[1/(4ε^2)]+1。

                 于是,对任意的ε>0,总存在正整数δ=[1/(4ε^2)]+1,

                 当n>N时,有│√(n+1)-√n│<ε。

                 即 lim(n->∞)[√(n+1)-√n]=0,命题成立,证毕。

温馨提示:答案为网友推荐,仅供参考
相似回答