f(x)=e^[(a-1)x],a≠1,
把f(x)看成e^u与u=(a-1)x的复合函数,
e^u是增函数,a>1时u是x的增函数,由复合函数的单调性知,f(x)是增函数;a<1时u是x的减函数,f(x)是减函数.
(2)x=0时f(x)+kx=1>0.
1)x>0时由f(x)+kx>=0得k>=-f(x)/x,记为g(x),
g'(x)=-{(a-1)xe^[(a-1)x]-e^[(a-1)x]}/x^2=-[(a-1)x-1]e^(a-1)x]/x^2,
i)a<1时g'(x)>0,g(+∞)→0,k>0;
ii)a>1时g'(x)=(1-a)[x-1/(a-1)]e^[(a-1)x]/x^2,x>1/(a-1)时g'(x)<0;0<x<1/(a-1)时g'(x)>0,
∴g(x)|max=g[1/(a-1)]=-e(a-1),k>=-e(a-1).
2)x<0时k<=-f(x)/x,
i)a>1时g'(x)>0,g(-∞)→0,k<0;
ii)a<1时仿上,g(x)|min=g[1/(a-1)]=-e(a-1),k<=-e(a-1).
综上a<1时0<k<=e(1-a);a>1时-e(a-1)<=k<0.①
设u=1/k^2-a/k,则a=1/k-ku,代入①,得
“1/k-ku<1,0<k<=e(1+ku-1/k)","1/k-ku>1,e(1+ku-1/k)<=k<0",
<==>u>1/k^2-1/k=(1/k-1/2)^2-1/4→+∞(k→0),
∴u的最小值不存在,本题无解。
温馨提示:答案为网友推荐,仅供参考