免疫学的发展简史

如题所述

18 世纪至 20 世纪中叶为经典免疫学时期。这一时期,人们对免疫功能的认识由人体现象的观察进入了科学实验时期。在此期间取得的重要成果包括:
牛痘苗的发明
牛痘苗的发明是继人痘苗之后免疫学的一个重要发展,是由英国医生 Jenner 在观察到患过牛痘的挤奶女工,不再患天花的事实后,通过长期研究的科学成果。该疫苗给人体接种后,只引起局部反应,并不造成严重损害,但能有效地预防天花。它不仅弥补了人痘苗的不足,而且可在实验室大量生产。因此很快地代替了人痘苗,被医学界所接受。
减毒活疫苗的发明
19 世纪末,随着微生物学的发展,法国免疫学家巴斯德(Pasteur)和德国细菌学家郭霍(Koch)在创立了细菌分离培养技术的基础上,通过系统地科学研究,利用物理、化学,以及生物学方法获得了减毒菌苗,并用于疾病的预防和治疗。Pasteur 以高温培养法制备了炭疽疫苗,用狂犬病毒在兔体内经连续传代制备了狂犬病疫苗。这些减毒疫苗的发明不但为实验免疫学打下了基础,也为疫苗的发展开辟了新局面。
抗体的发现
1890 年德国学者 Behring (贝苓)和日本学者北里用白喉外毒素免疫动物时发现,在被免疫的动物血清中有一种能中和外毒素的物质,称为抗毒素。将此免疫血清被动转移给正常动物,使后者获得了中和外毒素的能力。同年 Behring 又与 Kitasato 将白喉抗毒素正式用于白喉的治疗,开创了人工被动免疫疗法之先河。为此, Behring 于 1901 年获得诺贝尔医学和生理学奖。后来,人们相继发现了凝集素、沉淀素等能与细菌或细胞特异性反应的物质,统称为抗体;而将能引起抗体产生的物质称为抗原,从而确立了抗原和抗体的概念。
补体的发现
1894 年, Pfeiffer 发现了免疫溶菌现象。他将霍乱弧菌注射到已被该菌免疫的豚鼠腹腔内,发现新注入的霍乱弧菌迅速溶解。此外,取细菌免疫血清与相应细菌注入正常豚鼠腹腔也可得到同样结果。Bordet 将新鲜免疫血清加热 30 分钟后,再加入相应细菌,发现只出现凝集,丧失了溶菌能力。据此认为,免疫血清中可能存在两种与溶菌有关的物质,一种是对热稳定的物质即抗体,其能与相应细菌或细胞特异性结合,引起凝集;另一种是对热不稳定的物质,称之为补体,它是正常血清中的成分,无特异性,但具有协助抗体溶解细菌或细胞的作用。
血清学方法的建立
根据抗原和抗体特异性结合的特点,在抗毒素发现以后的 10 年中,建立了许多体外检测抗原、抗体的血清学方法如凝集反应、沉淀反应、补体结合反应等,为传染病的诊断和流行病学调查提供了新的重要手段。
免疫化学的研究
在抗原和抗体概念确立后,人们对其理化性质、抗原与抗体特异性结合的化学基础等问题产生了兴趣。20 世纪初, Landsteiner 等应用偶氮蛋白的人工结合抗原,即以芳香族有机化学分子偶联到蛋白质分子上形成的抗原,研究抗原抗体反应特异性的物质基础,从中认识到,抗原特异性实际上是由一些小分子的结构及构象决定的,进而提出了关于抗原抗体反应的格子学说,从理论上解释了血清学反应现象。20 世纪 30 年代, Tiselies 和 Kabot 建立了血清电泳技术,证明抗体是丙种球蛋白,并利用分离、纯化抗体的方法对抗体分子的结构与功能进行研究。Grubar 等人建立了免疫电泳技术,发现了抗体分子的不均一性的本质,从而使抗体分子与结构研究取得了重大进展。
抗体生成理论的提出
1897 年, Ehrlich 提出关于抗体产生的学说,即侧链学说。他认为抗毒素分子存在于细胞表面,当外毒素进入机体与其结合后,可刺激细胞产生更多的抗毒素分子,由细胞表面脱落入血。该学说当时未被免疫学界接受。20 世纪 30 年代 Haurowitz 和 Pauling 等先后提出抗体生成的直接模板学说和间接模板学说,他们均认为抗原决定了抗体的特异结构,否认抗体产生细胞的膜上具有识别抗原受体。这种只片面强调抗原对机体免疫反应的作用,忽视机体免疫系统对抗原识别的本质的理论,违背了免疫反应的基本规律,阻碍了抗体生成研究的过程。直到细胞系选择学说提出后,才使免疫学有了新的进展。
对机体保护性免疫机制的探讨
19 世纪末,对机体保护性免疫机制的探讨引起人们的关注,在此期间形成两大学派。一为以 Metchnikoff 为代表的细胞免疫学派,该学派认为抗感染免疫是由体内的吞噬细胞所决定;一为以 Ehrlich 为代表的体液免疫学派,该学派认为血清中的抗体是抗感染免疫的主要因素。它们各持己见,争论不休,但每一学派都仅仅反应了复杂免疫机制的不同侧面,存在一定的片面性。直至 1903 年, Wright 和 Douglas 在研究吞噬现象时,发现血清和其它体液中存在一种物质(调理素),能大大增强吞噬作用,从而初步将两大学派统一起来,使人们开始认识到机体的免疫机制包括两个方面:体液免疫和细胞免疫。 20 世纪中叶至该世纪 60 年代期间,为近代免疫学时期。这一时期人们冲破了抗感染免疫模板学说的束缚,对生物体的免疫反应性有了比较全面的认识,使免疫学开始研究生物问题,出现了全新的免疫学理论。因此,这一期实际上是免疫生物学时期。在此期间获得的主要成就包括:
一、迟发型超敏反应的发现
Koch 在用结核杆菌给患者皮下注射,试图进行免疫治疗时发现,在注射局部出现组织坏死现象,称为 Koch 现象。该现象具有特异性。Chase 等对 Koch 现象进一步深入研究,他们以致敏豚鼠血清转移给正常动物,未能引起结核菌素反应;而用其淋巴细胞转移则引起了阳性反应。从而证明了结核菌素反应不是由抗体,而是由致敏淋巴细胞引起,机体的免疫性不仅仅只有体液免疫,也可形成细胞免疫。
二、免疫耐受的发现
1945 年, Owen 发现异卵双生的两头小牛体内有两种血型红细胞共存,称其为血型细胞相嵌现象。由于不同血型细胞天然存在于同一机体内不引起免疫应答故又称为天然耐受。此后, Medawar 等在新生期小鼠体内成功地进行了人工诱导异己抗原耐受实验,揭示了体内处于发育阶段的免疫细胞无论接触自身抗原还是异己抗原,均可导致对相应抗原的耐受。
三、细胞系选择学说的提出
1958 年,澳大利亚免疫学家 Burnet 在 Ehrlich 侧链学说影响下,提出细胞系选择学说。该学说阐明了抗体产生的机制,并对诸如抗原识别、免疫记忆及自身耐受与自身免疫等许多重要免疫生物学现象作了解释,大大促进了现代免疫学的发展。该学说基本观点为① 认为机体内存在识别不同抗原的多种细胞系,每一细胞系的细胞表面表达识别相应抗原的同一受体;② 抗原进入机体后,选择性地与具有相应受体细胞系的细胞作用,使之活化、增殖、分化成效应细胞或记忆细胞;③ 胚胎期针对自身抗原的免疫细胞与自身抗原接触后可被破坏、排除或处于抑制状态;④ 免疫细胞可突变形成与自身抗原反应的细胞系,导致自身免疫病。
四、免疫学技术的发展
在此期间,免疫学技术也得到快速发展,建立了间接凝集反应和免疫标记技术,进一步促进了免疫学基础理论的研究和应用。 现代免疫学时期指 20 世纪 60 年代至今的时期。在这一时期,确认了淋巴细胞系在免疫反应中的地位,阐明了免疫球蛋白的分子结构与功能,对免疫系统特别是细胞因子、粘附分子等进行了大量研究,并从分子水平对免疫球蛋白的多样性、类别转化等进行了有益的探讨,在许多方面取得了突破性成就。
一、免疫系统的研究
1957 年 Click 发现摘除鸡法氏囊,可引起抗体产生缺陷。认为法氏囊是抗体产生细胞存在的主要场所,并将产生抗体的细胞称为 B 细胞。Miller 和 Good 通过在哺乳类动物体内进行早期胸腺摘除,导致细胞免疫缺陷和抗体产生严重下降,证明了存在于胸腺的免疫细胞主要执行细胞免疫,称之为 T 细胞。1969 年 Claman 和 Mitchell 等提出了 T 细胞亚群的概念。此后,人们进一步证实了经胸腺和法氏囊分化、成熟的 T 、 B 淋巴细胞在外周淋巴组织的分布,以及 T 、 B 细胞在抗体产生中的协同作用,从而建立了免疫系统的组织学和细胞学基础。
二、抗体结构与功能的研究
20 世纪 60 年代, Porter 用木瓜蛋白酶水解抗体,获得了抗体活性片段(Fab)和可结晶片段(Fc)。用化学还原法证明抗体是由多肽链组成,并以抗原分析法证明了抗体分子的不均一性。此后,人们统一了抗体球蛋白名称,并建立了免疫球蛋白的分类。
三、免疫网络学说的提出
1972 年, Jerne 提出免疫网络学说。该学说认为:抗体和淋巴细胞表面的抗原受体存在独特性,在抗原进入前,抗体处于相对稳定状态,当抗原进入机体后,使这种平衡被打破,导致特异性抗体产生,当后者达到一定量时,可引起抗独特型抗体产生。由此可见,在同一机体内一组抗体的独特型决定基可被另一组抗独特型抗体分子识别;而一组淋巴细胞表面的抗原受体可被另一组淋巴细胞表面抗独特型表面受体所识别,这样在淋巴细胞和抗体之间就形成了独特型 - 抗独特型免疫网络。
网络学说探讨了免疫调节机制,提出由抗原刺激引起的免疫应答不是无休止地进行,而是受独特型抗体的制约,籍以维持机体的生理稳定和平衡。
四、抗体多样性研究
早在 20 世纪 60 年代 Dreyer 和 Benner 等曾提出一种假设,认为编码免疫球蛋白(Ig)肽链的基因是由两种基因组成。在胚胎期,它们彼此分隔存在,在 B 细胞分化、发育过程中重排和拼接在一起。日本学者利根川进等应用分子杂交技术克隆出编码 Ig 分子 V 区和 C 区基因,并应用 cDNA 克隆探针证明了 B 细胞在分化发育过程中编码 Ig 的基因结构,进而阐明了抗原结合部位多样性的遗传控制。
五、细胞因子与免疫细胞膜分子研究
细胞因子和免疫细胞膜分子研究是近 20 年来免疫学研究的热点。
最初人们从细胞培养液中提取细胞因子进行功能和结构的研究,相继发现了白细胞介素(IL) 、干扰素(IFN) 、肿瘤坏死因子(TNF) 、集落刺激因子(CSF) 等细胞因子,对其生物学功能、作用特点有了进一步的了解。在此基础上,通过基因工程技术,可大批量生产细胞因子,促进了细胞因子在临床治疗和实验研究中的应用。
免疫细胞膜分子种类很多,主要包括 T 、 B 细胞抗原识别受体(TCR / BCR)、主要组织相容性抗原、白细胞分化抗原(CD) 、促分裂素受体、细胞因子受体、免疫球蛋白受体,以及其它受体和分子。20 世纪初,人们发现在不同种属或同种不同个体间进行正常组织或肿瘤移植时出现的排斥反应是由细胞表面主要组织相容性分子(MHC Ⅰ/Ⅱ类分子)决定的。此后,人们又注意到 T 细胞识别抗原时,存在 MHC 的限制性即 T 细胞抗原受体 (TCR) 在识别异己抗原时,同时识别自身 MHC 分子。
人们对白细胞分化抗原 (CD) 的大量研究,揭示了 T 细胞亚群的功能、细胞激活途经和膜信号的转导及细胞分化过程中的调控等机制。此外,在研究细胞毒性T 细胞(CTL)杀伤作用时,发现 CTL 表达的 FasL 可与靶细胞表达的 Fas 结合,引起靶细胞内半胱天冬蛋白酶(caspsase)级联活化,裂解 DNA ,导致靶细胞死亡称为细胞程序性死亡(PCD)或细胞凋亡(apoptosis)。
六、应用免疫学的发展
1975 年 Kohler 和 Milstein 首创杂交瘤技术。他们将小鼠骨髓瘤细胞和经绵羊红细胞(SRBC)致敏的 B 细胞在体外进行融合形成杂交瘤(hybridoma)。这种杂交瘤细胞既保持了骨髓瘤细胞大量无限制生长繁殖的特性,又具有合成和分泌抗体的能力。应用该技术可产生均一的、只针对单一抗原决定基的抗体,称为单克隆抗体(McAb)。McAb 具有纯度高、特异性强、可大量生产等优点,已被广泛应用于血清学诊断、免疫细胞及其它组织细胞表面分子的检测,并通过与核素、各种毒素或药物化学偶联进行肿瘤导向治疗研究。
将分子生物学技术应用于免疫学研究也是一项突破性成就。利用分子杂交技术和分子遗传学理论制备的基因工程抗体如完全人源化抗体、单链抗体及双特异性抗体等较 McAb 更具优越性。20 世纪 80 年代,分子杂交技术就被用于研究免疫球蛋白分子、 T 细胞受体分子、补体、细胞因子,以及 MHC 分子等的基因结构、功能及其表达机制。20 世纪 80 年代出现的聚合酶链反应(PCR)是一种体外核酸扩增技术。应用该技术制备重组疫苗、 DNA 疫苗及转基因植物疫苗,为免疫预防开辟了崭新的前景。而利用基因工程制备重组细胞因子的广泛开展,已取得了较大的经济效益和社会效益。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-10-10
免疫学发展简史
免疫学的发展大致可分为经验免疫学时期、传统免疫学时期、近代免疫学时期和现代免
疫学时期。这里对各时期有代表性的事件做一简介。
一、经验免疫学时期(16~17世纪)
经典代表是中国医生用接种“人痘苗”的方法预防天花取得成功,并传入邻国。
二、传统免疫学时期(18~20世纪初)
1.人工主动免疫和人工被动免疫方法的建立
(1)1798年,英国乡村医生Jenner发表了接种牛痘苗成功预防天花的研究报告。
(2)1880年,法同科学家Pasteur。制备炭疽、狂犬病等减毒活疫苗,用于预防炭疽、狂犬病等传染病。
(3)1890年,德国医生Behring和Kitasato用减毒白喉外毒素免疫动物,获得抗血清(即白喉抗毒素),用以治疗白喉取得成功。Behring于1901年成为第一届诺贝尔医学和生理学奖得主,他开创了人工被动免疫疗法之先河。
2.原始细胞免疫和体液免疫学说的提出及两者的统一
(1)1883年,俄国学者Mechnikov提出原始的细胞免疫学说,认为吞噬细胞是执行抗感染免疫作用的细胞。Meclnikov首先提出细胞免疫学说,而荣获1908年诺贝尔医学和生理学奖。
(2)1890年,德国学者Ehrlich提出原始的体液免疫学说,认为血清中存在的抗菌物质在抗感染免疫中起决定作用。Ehrlich首先提出体液免疫学说以及抗体产生的侧链学说而荣获1908年诺贝尔医学和生理学奖。
(3)1894年,Pkffer等发现溶菌素(抗体),同年比利时学者Bordet发现补体及其与抗体协作产生的溶菌作用,这些发现支持了体液免疫学说。Bordet因发现补体,荣获1919年诺贝尔医学和生理学奖。
(4)1903年,Wright和Douglas发现动物免疫血清能加速吞噬细胞对相应细菌的吞噬,提出免疫血清(含抗体和补体)具有调理吞噬的作用,从而将体液和细胞免疫学说统一起来。
3.免疫病理概念的建立 1902年,法国学者Richet和Porliter发现,接受海葵提取液注射后幸免于难的狗,数周后再次接受极小量海葵提取液可立即死亡,据此提出过敏反应即免疫病理的概念。过敏反应的发现开创了免疫病理学研究,Richet荣获1913年诺贝尔医学和生理学奖。
4.血清学技术的建立
(1)1896,Durham等发现特异性凝集反应,同年Widal建立了诊断伤寒的肥达试验。
(2)1898年,Kraus建立了沉淀试验。
(3)1900年,Bordet和Gengou建立了补体结合试验,
(4)1901年,奥地利学者Landsteiner发现了ABO血型抗原,建立了检测血型的玻片凝集试验(Landsteiner证实了红细胞ABO m型抗原,荣获1930年诺贝尔医学和生理学奖)。
三、近代免疫学时期(20世纪中叶)
(1)1939年,Tiselius和Kabat血清蛋白电泳技术,证明抗体是Y球蛋白。
(2)1942年,Chase和Landsteiner发现迟发型超敏反应可以通过致敏淋巴细胞而不是抗体转移给正常个体。
(3)天然免疫耐受和人工诱导的免疫耐受 1945年Owen发现在胎盘血管融合的异卵双生小牛体内,各自含有两种不同血型抗原的红细胞,成年后小牛可接受对方移植的皮肤而不排斥的现象,由此,1949年澳大利亚学者Burnet提出免疫耐受的概念。1953年,英国学者Medawar等给胎鼠注入同种异型脾细胞,成功地诱导出获得性移植耐受,证实了胚胎期免疫耐受的理论。
(4)克隆选择学说的建立 1957年,Burnet提出了抗体生成的克隆选择学说。这一学说作为研究特异性免疫应答的理论基础,对抗原的识别、免疫记忆、免疫耐受、自身免疫及移植排斥等都做出了比较合理的解释,从而开启了现代免疫!学的新阶段,Burnet和Medawar的研究成果获得了1960年诺贝尔医学和生理学奖。
(5)免疫球蛋白基本结构的阐明 1959年,Porter和Edelman从多发性骨髓瘤患者血清中获得均质性免疫球蛋白,用酶切和多种化学还原法阐明了抗体的基本结构及各功能区,Porter和Edelman的研究获得了1972年诺贝尔医学和生理学奖。