FOC驱动板学习笔记(一)——DRV8301

如题所述

深入解析FOC驱动板的核心组件——DRV8301学习笔记(一)



在打造高性能无刷电机驱动板时,DRV8301无疑是一个值得信赖的选择。这款芯片提供了强大的供电方案,包括PVDD24V的主电源和VCC3.3V、5V转3.3V的LDO,满足了各种工作环境的需求。其亮点在于支持3.3V/5V接口,适应宽广的输入范围6-60V,具备1.5A的输出能力,并集成了一流的buck电源,简化了设计过程。



关键的接口引脚中,降压转换器的缺失是DRV8301与DRV8303的主要区别;RT_CLK,即外部时钟接口,需要配合205KΩ电阻进行稳定;COMP是环路补偿,确保了电路的稳定性和精度;VSENSE用于电压检测,帮助实时监控工作状态;PWRGD和nOCTW分别是热保护和过流/过温警告,确保系统的安全;nFAULT则提供了故障报告,便于故障排查。



使用时,部分信号可以通过硬件SPI进行编程,但需注意死区时间的设定。虽然DC_CAL和其他详细信息未在此概述,但推荐参考故障排查图以获取更全面的信息。当AL信号高时,设备会自动进行保护,通过外部MCU进行直流偏置校准。DRV8301内置两个高性能电流放大器,用于精确电流测量,通过DC_CAL或SPI进行校准,可减小偏置和漂移,支持4种可编程增益设置,输出3V偏置支持双向检测,REF电压为输出的一半。



GVDD是内部门驱动电压调节器,与地相连。CP1/2则是电荷泵供电,推荐使用47nF陶瓷电容。EN_GATE负责驱动和放大器的开启,需注意GVDD的过压处理。INH/L_A/B/C六路输入PWM与STM32f407VET6的TIM1/8相连,DVDD是内部3.3V供电,用于REF设置电流放大器偏置。电流放大器的输出SO1/2接56Ω电阻,AVDD提供6V模拟供电,而AGND则是模拟地引脚。PVDD1则为驱动、放大器和SPI通信提供电源,独立供电且PVDD2接地。



驱动MOS管部分,电路设计需谨慎,例如BST自举电容需选择耐压等级合适的,NMOS应选型VDS1.5~2倍于PVDD,强调ID电流大和RDS(ON)电阻小。SPI供电需与MCU电源保持一致,内部高侧MOSFET连接至buck电源。D1推荐使用肖特基或快回复二极管,耐压至少1.5-2倍PVDD,C10建议使用MLCC电容,L1则是屏蔽电感。BST_BK的buck自举电容同样需要注意耐压,PVDD2供电部分则采用0.1uF和4.7uF滤波,耐压需大于1.5倍PVDD。EN_BUCK的使能控制在1.2V以下时禁用,而SS_TR的软启动和跟踪功能则需连接外部电容。最后,所有地线连接到GND,并确保与PCB底部的热散设计紧密相连。遗憾的是,DRV8301的原理图并未提供,但通过上述关键信息,你已经对它的工作原理有了更深入的理解。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜