急求英语翻译能人帮助 汽车软件应用方面 急

4.2 Analysis conditions
Of the traveling test conditions of actual machine, 3 running modes were selected to execute calculation. For this calculation, it was assumed that a loaded vehicle traveled on a hard road surface.
(1) The case of both wheels getting over blocks
Both left and right tires get over blocks at steady-state speed (approx. 5.6km/h) at the same time (Fig. 8).
3) Left-right sudden turn
After traveling at steady-state speed (approx. 15km/h), the vehicle is suddenly turned at its maximum steering speed
(Fig. 10).
4.3 Evaluation points for comparison with actual measurement
4 points at front and rear portions of left and right frames
were selected as evaluation points because it was expected that
comparatively high stress would occur there and that we would
be able to grasp the deformation mode of frame from the behavior of these points (Fig. 11).
4.4 Evaluation by comparing with actual measurement
(1) The case of both wheels getting over blocks
Fig. 12 shows the comparison of calculation and measurement for front right evaluation point; Fig. 13, for rear right evaluation point. For front right evaluation point, both stress level and variation period show a good coincidence between calculation and measurement. Comparatively high stress occurs when the center axle wheel is lowered after getting over the block.
On the other hand, for rear right evaluation point, calculated stress on compression side becomes high, compared with measurement, at around 13th second, though the behavior of variation shows a comparatively good coincidence. At this time, the front wheel tire gets on the block while the chassis is still being lowered after the rear wheel is lowered. The difference between calculation and measurement seems attributable to that, with the 2-dimensional odel used for the calculation, local deformation of tire is small compared with actual machine, resulting in increased reaction force of tire.
Fig. 14 shows the deformation and stress distribution of
frames when the center axle wheel gets over the block. It is
understood from this figure that the frames are deformed in
vertical bending mode.
手工翻译哦

4.2 Analysis conditions Of the traveling test conditions of actual machine, 3 running modes were selected to execute calculation. For this calculation, it was assumed that a loaded vehicle traveled on a hard road surface.
4.2 状况分析
对于实车行驶的测试状况,这里有3种运行模式供我们选择。在此计算中,我们假定是一定负荷的车辆行驶在硬路面上。
(1) The case of both wheels getting over blocks
(1)两侧车轮均驶过障碍物
Both left and right tires get over blocks at steady-state speed (approx. 5.6km/h) at the same time (Fig. 8).
左右两侧车轮以固定速度(约 5.6km/h)同时碰到障碍物(图8)。
3) Left-right sudden turn
3)突然的转向
After traveling at steady-state speed (approx. 15km/h), the vehicle is suddenly turned at its maximum steering speed
车辆在以固定速度(约 15km/h)行驶时,突然以其最大转向速度向左或向右转向
(Fig. 10).
(图 10)。
4.3 Evaluation points for comparison with actual measurement
4.3 用于与实际测量比较的评估点
4 points at front and rear portions of left and right frames
were selected as evaluation points because it was expected that
comparatively high stress would occur there and that we would
be able to grasp the deformation mode of frame from the behavior of these points (Fig. 11).
我们选取了车体前后部的左右车架上共四个点来作为评估点,因为过障碍物时这些点会产生相当大的应力,并且通过对这些点特性的学习我们可以更好的掌握车架的变形模式(图 11)。
4.4 Evaluation by comparing with actual measurement
4.4通过与实测值的比较作出评估
(1) The case of both wheels getting over blocks
(1)两侧车轮均驶过障碍物
Fig. 12 shows the comparison of calculation and measurement for front right evaluation point;
图12 显示了右前评估点的计算值与实测值的比较
Fig. 13, for rear right evaluation point.
图13 右后评估点
For front right evaluation point, both stress level and variation period show a good coincidence between calculation and measurement.
对于右前评估点的应力水平和变化周期,计算结果和测量结果显示了良好的一致性。
Comparatively high stress occurs when the center axle wheel is lowered after getting over the block.
在驶过障碍物后中间轴轮降低时会产生相当大的应力。
On the other hand, for rear right evaluation point, calculated stress on compression side becomes high, compared with measurement, at around 13th second, though the behavior of variation shows a comparatively good coincidence.
另一方面,在大概第13秒的时候右后评估点的应力计算值比实测值偏高,尽管此时变化的计算值与实测值仍具有良好一致性。
At this time, the front wheel tire gets on the block while the chassis is still being lowered after the rear wheel is lowered.
此时,前轮遇上障碍物而底盘在后轮降低后仍然处于降低位置。
The difference between calculation and measurement seems attributable to that, with the 2-dimensional odel used for the calculation, local deformation of tire is small compared with actual machine, resulting in increased reaction force of tire.
这样看起来计算值与实测值之间的差异是因为:在我们用于计算的二维模型里,轮胎的局部变形比实车的要小,导致了轮胎的反作用力增大。
Fig. 14 shows the deformation and stress distribution of frames when the center axle wheel gets over the block. It is understood from this figure that the frames are deformed in vertical bending mode.
图14 展示了当中间轴轮过障碍物的时候车架的变形和应力分布。由图中我们可以知道这种变形属于垂直面上的弯曲变形。

节选自"Development of Kinematical Analysis Method for Vehicle"
自己翻的
温馨提示:答案为网友推荐,仅供参考
第1个回答  2009-04-10
4.2分析条件
该行的测试条件的实际机, 3运行模式被选定执行计算。这个计算,假设一个装上车前往硬路面。
( 1 )的情况都越来越多块车轮
左,右两个轮胎克服区块在稳态速度(约五点六公里每小时)在同一时间(图8 ) 。
3 )左右突然转向
旅行后的稳态速度(约15公里每小时) ,车辆突然转向在其最高速度
(图10 ) 。
4.3评价点比较实际测量
4点,车头和车尾部分左,右帧
被选定为评价点,因为这是预期
相对较高的压力有可能发生,我们将
能够把握变形模式的框架内的行为,从这些点(见图11 ) 。
4.4评价比较符合实际测量
( 1 )的情况都越来越多块车轮
图。 12显示了比较计算和测量右前方评价点;图。 13 ,对右后轮的评价点。右前方为评价点,这两个应力水平和变化期间表现出良好的一致性的计算和测量。相对较高的压力时,就会发生车轮中心轴下调后,在阻挡。
另一方面,对右后轮的评价点,计算的压力压缩一方成为高,比较测量,在13秒左右,但行为的变化显示了比较好的巧合。在这个时候,前轮轮胎被封锁,同时对底盘仍在下调后后轮降低。之间的差额计算和测量似乎归因于,随着二维模型用于计算,局部变形的轮胎是比较实际的小机器,从而提高反应力的轮胎。
图。 14显示的变形和应力分布
帧时,中心轴轮得到的块。它是
从这个数字理解的框架变形
垂直弯曲模式。
第2个回答  2009-04-10
分析条件,旅游条件的实际测试机, 3运行模式被选定执行计算。这个计算,假设一个装上车前往硬路面。
1 )的情况都得到了车轮拦截左,右轮胎克服区块在稳态速度(约五点六公里每小时)在同一时间(图8 ) 。
3 )左右突然转向旅行后在稳态速度(约一五公里每小时) ,车辆突然转向在其最高速度(图10 ) 。
4.3评价点进行比较实测4点,车头和车尾部分左,右帧被选定为评价点,因为它是相对较高的预期将出现有压力,我们将能够把握变形模式的框架内从的行为,这些点(见图11 ) 。
4.4评价比较符合实际测量
( 1 )的情况都得到了车轮块图。 12显示了比较计算和测量右前方评价点;图。 13 对右后轮的评价点。右前方为评价点,这两个应力水平和变化期间表现出良好的一致性的计算和测量。相对较高的压力时,就会发生车轮中心轴下调后,在阻挡。另一方面,对右后轮的评价点,计算的压力压缩一方成为高,比较测量,在13秒左右,但行为的变化显示了比较好的巧合。

在这个时候,前轮轮胎被封锁,同时对底盘仍在下调后后轮降低。之间的差额计算和测量似乎归因于,随着二维模型用于计算,局部变形的轮胎是比较实际的小机器,从而提高反应力的轮胎。
图14显示的变形和应力分布的帧时,中心轴轮得到的块。据了解,这个数字从该帧在垂直弯曲变形模式。
第3个回答  2009-04-10
真实机器,3跑步方式的移动试验状况的4.2分析状况被选出执行计算.为这计算,它was认为一装载车辆在一努力道路表面上移动.(1)使左边和正确轮胎两者越过起跑器情况的两个轮子起跑器以稳恒态-速度结束approx.5.6km/h同时((Fig. 8).3)正确留下-突然倾向下午以稳恒态-速度移动approx.15km/h,车辆被在它的最大驾驶速度((Fig. 10)突然翻转.因为它was预期比较高压力将那里发生和我们将是能,为和4点在左边和正确结构的前面的和后面部分方面真实度量比较4.3评价点被选择为评价点抓损形方式的结构从行为的这些点(图11).4.4评价被,把使Fig. 12越过起跑器情况的两个轮子和真实度量(1)比较为前面的正确评价点展示计算和度量的比较;为后面正确评价点Fig. 13.为前面的正确评价点,压力水平和变化时期对a表现出好巧合在中间计算和度量.当中心轴轮子存在降低起跑器结束下午的时候,比较高压力发生.另一方面,为后面正确评价点,精心设计的强调压紧方面变得高,在四周13th秒, 虽然变化的行为展示a,和度量相比比较好处巧合.在这次时刻,与此同时在后轮被降低之后,底盘正仍然被降低,前部轮子轮胎起跑器弄上.计算和度量之间的差异似乎是可归因的,用2-维的odel用于计算的,轮胎存在狭窄部分的本地损形把和真实机器比较结果是轮胎的增加反作用力量的.当th的时候,Fig. 14展示损形和压力把结构分配