如何解三次一元方程

如题所述

解一元三次方程解法如下:

卡尔丹公式法。

特殊型一元三次方程X^3+pX+q=0 (p、q∈R)。

判别式Δ=(q/2)^2+(p/3)^3。

卡尔丹公式。

X1=(Y1)^(1/3)+(Y2)^(1/3);

X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;

X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,

其中ω=(-1+i3^(1/2))/2;

Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。

标准型一元三次方程aX ^3+bX ^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

令X=Y-b/(3a)代入上式。

可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。

折叠因式分解法。

因式分解法不是对所有的三次方程都适用,只对一些简单的三次方程适用.对于大多数的三次方程,只有先求出它的根,才能作因式分解。当然,对一些简单的三次方程能用因式分解求解的,当然用因式分解法求解很方便,直接把三次方程降次。

例如:解方程x^3-x=0

对左边作因式分解,得x(x+1)(x-1)=0,得方程的三个根:x1=0;x2=1;x3=-1。

折叠一种换元法。

对于一般形式的三次方程,先将方程化为x^3+px+q=0的特殊型。

令x=z-p/3z,代入并化简,得:z^3-p/27z+q=0。再令z^3=w,代入,得:w^2-p/27w+q=0.这实际上是关于w的二次方程。解出w,再顺次解出z,x。

折叠导数求解法。

利用导数,求的函数的极大极小值,单调递增及递减区间,画出函数图像,有利于方程的大致解答,并且能快速得到方程解的个数,此法十分适用于高中数学题的解答。

如f(x)=x^3+x+1,移项得x^3+x=-1,设y1=x^3+x,y2=-1,

y1的导数y1'=3x^2+1,得y1'恒大于0,y1在R上单调递增,所以方程仅一个解,且当y1=-1时x在-1与-2之间,可根据f(x1)f(x2)<0的公式,无限逼近,求得较精确的解。

温馨提示:答案为网友推荐,仅供参考
相似回答