解ç;
(1)使ç¨æ¢å
æ³
â f(a-x)=f(a+x)
设t=a-x,代å
¥ä¸å¼ï¼
f(t)=f(2a-t)æ¢æ¯
f(x)=f(2a-x) / è¿ä¸ç»è®ºå¯ä»¥ç´æ¥ååºæ¥ /
åç
f(x)=f(2b-x)
f(2a-x) =f(2b-x)å¯ä»¥æ¨åº f(x)=f(2b-2a+x) ,å¾è¯ã
â¡â¢åç
(2)f(x+a)=-f(x)=f(x-a)=-f(x-2a)
æ以f(x)=f(x-2a),å¾è¯ã
å
¶å®åçã
解:(1)âµæç©çº¿ç顶ç¹åæ 为A(-2ï¼3)ï¼â´å¯è®¾æç©çº¿ç解æå¼ä¸º ã
ç±é¢æå¾ ï¼è§£å¾ ã
â´ç©çº¿ç解æå¼ä¸º ï¼å³ ã
(2)设åå¨ç¬¦åæ¡ä»¶çç¹Pï¼å
¶åæ 为(pï¼0)ï¼å
PA = ï¼PB= ï¼AB =
å½PA=PBæ¶ï¼ = ï¼è§£å¾ ;
å½PA=PBæ¶ï¼ =5ï¼æ¹ç¨æ å®æ°è§£;
å½PB=ABæ¶ï¼ =5ï¼è§£å¾ ã
â´xè½´ä¸åå¨ç¬¦åæ¡ä»¶çç¹Pï¼å
¶åæ 为( ï¼0)æ(-1,0)æ(1,0)ã
(3)âµPA-PBâ¤ABï¼â´å½AãBãPä¸ç¹å
±çº¿æ¶ï¼å¯å¾PA-PBçæ大å¼ï¼è¿ä¸ªæ大å¼çäºABï¼
æ¤æ¶ç¹Pæ¯ç´çº¿ABä¸xè½´ç交ç¹ã
设ç´çº¿ABç解æå¼ä¸º ï¼å
ï¼è§£å¾ ãâ´ç´çº¿ABç解æå¼ä¸º ï¼
å½ =0æ¶ï¼è§£å¾ ã
â´å½PA-PBæ大æ¶ï¼ç¹Pçåæ æ¯(4ï¼0)
温馨提示:答案为网友推荐,仅供参考