冰为什么在4℃时密度最大?

如题所述

极性分子与非极性分子你知道冰为什么在4℃时密度最大吗?这就是本讲所学内容——分子间作用力和氢键的有关知识。由于水分子间有氢键缔合这样的特殊结构。根据近代X射线的研究,证明了冰具有四面体的晶体结构。这个四面体是经过氢键形成的,是一个敞开式的松弛结构,因为5个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。这种通过氢键形成的定向有序排列,空间利用率较小,约占34%,因此冰的密度较小。液态水不像冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不像冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。这样,分子间的空隙减少,密度就增大了。温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。但同时,水分子的热运动也增加了分子间的距离,使密度又减小。这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。知识延伸 一、分子间作用力 分子型物质无论是气态、液态或固态,都是由许多分子组成的,在分子间存在着一种较弱的作用力叫分子间作用力,也叫做范德华力。它比分子内原子间的作用力(化学键)要小。 分子间的作用力是一个总的提法,按作用力产生的原因和特性可分为三种力: l.取向力 当两个极性分子靠近时,同极相斥,异极相吸,产生相对转动,最后必然是异极相对,同极尽量远离,这叫做分子的取向。这种由于极性分子取向而产生的力叫取向力。 2.诱导力 当极性分子接近非极性分子时,极性分子的偶极电场使非极性分子发生极化从而产生正、负电荷重心不相重合,这种由于外来的影响而产生的偶极叫诱导偶极,诱导偶极与固有偶极产生的力称为诱导力。一般说来,极性分子的极性越大,诱导力越大。分子的变形性越大,诱导力也越大。 3.色散力 非极性分子之间也存在着相互吸引力,非极性分子内部的原子核和电子都在不断地运动,不断地改变它们相对的位置。在某一瞬间,分子的正电荷重心和负电荷重心可能发生某一瞬时的不相重合,这就产生了瞬间偶极。如果相邻分子也产生了相应的瞬间偶极,相互取向的瞬间偶极之间就产生了吸引力,这种吸引力叫做色散力。因此可以近似地说,相对分子质量越大,这种力越大,它们的熔沸点就相应地增高,但必须指出;色散力不仅存在于非极性分子之间也存在于极性分子之间、极性分子与非极性分子之间。 在考虑分子的极性时,不仅要考虑键的极性,还要考虑分子的形状,有时还必须对顺反异构体加以注意。 二、氢键 l.氢键 由于与电负性极强的元素(如F、O、N等)相结合的氢原子和其他电负性极强的原子间所产生的引力而形成的。通常用X—H…Y表示,式中的虚线表示氢键。其中X和Y代表F、O、N等电负性强而原子半径较小的非金属原子。 2.氢键的特点 (1)氢键基本上还是静电吸引作用,它的键能一般小于41.84kJ/mol,与分子间作用力的数量相近。 (2)有饱和性和方向性。 (3)X、Y电负性越大,半径越小,所形成的氢键越稳定。 3.氢键的类型 氢键可分为分子间氢键和分子内氢键两种类型。如H2O、HF、NH3分子间存在氢键,故它们比同主族其他元
素的氢化物的沸点要高。如甲酸分子间氢键: 又如邻羟基苯甲酸分子存在分子内氢键,一般会使化合物的沸点、熔点降低,汽化热、升华热减小。 三、离子的极化与离子的变形 在离子化合物中,阴、阳离子都带有电荷,它的电荷场会对离子产生作用,我们把一个离子使另一个离子产生某些结构变化(原子核和电子云发生相对位移)的过程叫做极化。离子被极化的结果叫做变形。 1.影响离子的变形因素 (1)离子的大小是决定离子变形的主要因素,离子半径越大,核对最外层电子的吸力越弱,离子越易变形。 (2)在离子大小相近时,其变形主要由离子外层的电子数决定,例如一般外层具有9~18个电子时,其变形要比8电子型的离子大得多。 (3)离子的电荷,正离子电荷越多,其变形越小;负离子的电荷越多,其变形大。 (4)复杂的阴离子变形性通常不大,而且中心原子氧化数越高,变形性越小。如常见的一些复杂离子和简单阴离子的变形性对比如下: 2.离子的极化学说及其应用 离子是带电的粒子,它使邻近离子变形的能力叫该离子的极化力。离子极化力的强弱主要决定于以下三个因素: ①离子的大小:离子越小,极化力越强; ②离子的电荷;电荷数越多,极化力越强; ③离子的电子层结构:外层具有18、18+2个电子的离子,极化力最强;外展具有9~17个电子的离子,极化力次之。外层具有8个电子(惰性气体型)构型的离子极化力最弱。离子的极化对无机化合物的溶解度、稳定性、熔沸点以及颜色等均有一定的影响。 (1)离子极化对金属化合物熔点的影响 我们先看下面几组金属化合物熔点数据: 从左边一组熔点数据来看,Hg2+的极化作用和变形性都很大,Be2+的极化作用大于Ca2+,所以HgCl2中的共价性成分最大,BeCl2中次之,CaCl2中最少,即HgCl2转化为由极性分子组成的分子晶体倾向最大,熔点最低,BeCl2的熔点次之,CaCl2的熔点最高。从右边一组熔点数据来看,正好说明从F到I,随着原子序数的增加X-离子半径增大,离子的变形性增大,因而键的离子性减弱,熔点下降。(2)离子极化对金属化合物在水中溶解度的影响离子键结合的无机化合物一般可溶于水,溶解度的大小,可用晶格能和水合能的差异来解释,而共价型的无机物晶体却难溶于水。例如AgF溶于水(18g/L),而AgCl、AgBr、AgI都难溶于水,其溶解度依次减小。这是由于离子的极化改变了彼此的电荷分布,导致离子键向共价键过渡。由于F-变形性小,所以AgF仍属于离子晶体,随着Cl—Br—I-的顺序,负离子的变形性依次增加,所以AgX的共价性也依次增加,它们的溶解度就依次减小了。(3)离子极化对金属碳酸盐热稳定性的影响对于离子型化合物而言,晶格能是离子晶体稳定性的量度,但下表中的数据,却不能用晶格能来解释 这些数据反映出:(1)碱金属碳酸盐的热分解温度高于碱土金属碳酸盐;(2)碱土金属碳酸盐,随原子序数的增大,热分解温度升高;(3)过渡金属碳酸盐的热稳定性差。我们可以用离子极化学说来解释:当没有外界电场(或正离子)影响时,CO32-离子中的3个O2-同样被中心的CW)所极化,但M2+(或M+)的正电场对最邻近的一个O2-也发生极化作用,这种极化作用与中心C(IV)对O2-的极化作用正好相反,叫做反极化作用。由于这种反极化作用的存在,减弱了碳氧间的键。当反极化作用相当强烈时,可以超过C(IV)对O2-的极化作用,导致碳酸根破裂,分解为MO和CO2。显然,金属离子的极化作用越强,它对碳酸根离子的反极化作用也越强,碳酸根离子越不稳定。上述碳酸盐热分解的一些规律,正说明金属离极化能力的强弱规律。(4)离子极化导致化合物颜色的加深离子化合物有无颜色.首先取决于组成离子化合物的离子本身有无颜色。但有时无色的离子也可以形成有色地化合物。如Pb2+、I-和S2-都是无色的离子,而PbS、PbI2分别是黑色和黄色的,这是由于 Pb2+的极化作用强,而 S2-、I-的变形性大,离子间的极化可以使原来离子的能级相互靠近,容易发生从阴离子到阳离子的电荷跃迁,所以 PbS、PbI2可以吸收一部分可见光来完成这种电荷跃迁,从而显现其互补色。因此离子的相互极化可以使无色离子形成有色化合物,而且阴离子的半径越大,变形性越大,化合物随颜色就越深。如卤化物中以碘化物的颜色最深,硫化物的颜色比相应的氧化物的颜色深。(5)离子极化可以转变晶型离子极化引起离子键向共价键过渡,在这种过渡中,离子间的距离缩短,使得r+/r-的比值减小,往往也减小晶体的配位数,导致晶型的转变。如 CdS的离子半径比r+/r- = 97pm/184pm=0.53,应属于 NaCl型晶体,实际上CdS的晶体属于ZnS型。在化学上把组成相同的物质,可以取不同晶型的现象,称为同质多晶现象。与同质多晶现象相反,有一些组成不同,但化学性质类似的物质,能够生成外形完全相同的晶体的现象,称为类质同晶现象。这些物质互称为类质同晶体。如明矾[Kal(SO4)2·12H2O]和铬矾[KCr(SO4)2·12H2O]都形成八面体结晶,MgSO4·7H2O和NiSO4·7H2O也是类质同晶体。它们的特征是:存在于同一种溶液的这类物质能一起结晶出来,生成完全均匀的混晶。上述的离子极化学说在无机化学中有多方面的应用,可以说是对离子键理论的一个补充,它能够帮助我们理解和记忆金属化合物的性质的变化规律。
温馨提示:答案为网友推荐,仅供参考