马氏体是什么结构?

如题所述

问题一:什么叫做马氏体? 马氏体转变是一类非扩散型的固态相变,其转变产物(马氏体)通常为亚稳相。马氏体名称是源自钢中加热至奥氏体(Y固溶体)后快速淬火所形成的高硬度的针片状组织,为纪念冶金学家Martens而命名。马氏体转变的主要特点是无扩散过程,原子协同作小范围位移,以类似于孪生的切变方式形成亚稳态的新相(马氏体),新旧相化学成分不变并具有共格关系。目前已得知,不仅在钢中,在其他一些合金系,以及纯金属和陶瓷材料中都可有马氏体转变,故其含义已是广泛了。

问题二:马氏体的组成类型 常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之间互成60°或120°角。马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及时回火,防止应力开裂。

问题三:马氏体组织有哪几种基本类型?它们在形成条件、晶体结构、组织形态、性能有何特点?马氏体的硬度与含碳量 (1)两种,板条马氏体和片状马氏体。
(2)奥氏体转变后,所产生的M的形态取决于奥氏体中的含碳量,含碳量<0.6%的为板条马氏体;含碳量在0.6―1.0%之间为板条和针状混合的马氏体;含碳量大于1.0%的为针状马氏体。低碳马氏体的晶体结构为体心立方。随含碳量增加,逐渐从体心立方向体心正方转变。含碳量较高的钢的晶体结构一般出现体心正方。低碳马氏体强而韧,而高碳马氏体硬而脆。这是因为低碳马氏体中含碳量较低,过饱和度较小,晶格畸变也较小,故具有良好的综合机械性能。随含碳量增加,马氏体的过饱和度增加,使塑性变形阻力增加,因而引起硬化和强化。当含碳量很高时,尽管马氏体的硬度和强度很高,但由于过饱和度太大,引起严重的晶格畸变和较大的内应力,致使高碳马氏体针叶内产生许多微裂纹,因而塑性和韧性显著降低。
(3)随着含碳量的增加,钢的硬度增加。

问题四:马氏体形成有何特点? 常见马氏体组织有两种类型。中低碳钢淬火获得板条状马氏体,板条状马氏体是由许多束尺寸大致相同,近似平行排列的细板条组成的组织,各束板条之间角度比较大;高碳钢淬火获得针状马氏体,针状马氏体呈竹叶或凸透镜状,针叶一般限制在原奥氏体晶粒之内,针叶之间互成60°或120°角。
马氏体转变同样是在一定温度范围内(Ms-Mz)连续进行的,当温度达到Ms点以下,立即有部分奥氏体转变为马氏体。板条状马氏体有很高的强度和硬度,较好的韧性,能承受一定程度的冷加工;针状马氏体又硬又脆,无塑性变形能力。马氏体转变速度极快,转变时体积产生膨胀,在钢丝内部形成很大的内应力,所以淬火后的钢丝需要及时回火,防止应力开裂。
形态特征
马氏体的三维组织形态通常有片状(plate)或者板条状(lath),片状马氏体在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状、竹叶状的原因,板条状马氏体在金相观察中为细长的条状或板状。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一,同时马氏体的脆性也比较高。
相变特征和机制:马氏体相变具有热效应和体积效应,相变过程是形核和长大的过程。但核心如何形成,又如何长大,目前尚无完整的模型。马氏体长大速率一般较大,有的甚至高达10cm/s。人们推想母相中的晶体缺陷(如位错)的组态对马氏体形核具有影响,但目前实验技术还无法观察到相界面上位错的组态,因此对马氏体相变的过程,尚不能窥其全貌。其特征可概括如下:
马氏体相变是无扩散相变之一,相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的(图1切变式位移示意)。原子位移的结果产生点阵应变(或形变)(图2 原子位移产生点阵应变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。将一个抛光试样的表面先划上一条直线,如图3a马氏体相变时的形状改变中的PQRS,若试样中一部分(A□B□C□D□-A□B□C□D□)发生马氏体相变(形成马氏体),则PQRS直线就折成PQ、QR□及R□S□三段相连的直线,两相界面的平面A□B□C□D□及A□B□C□D□保持无应变、不转动,称惯习(析)面。这种形状改变称为不变平面应变(图3 马氏体相变时的形状改变)。形状改变使先经抛光的试样表面形成浮突。由图4 高碳钢中马氏体的表面浮突×600可见,高碳钢马氏体的表面浮突,它可由图5表面浮突示意示意,可见马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘(图6Co-30.5Ni合金形成六方马氏体时产生的表面浮突干涉图像)。
马氏体的惯习(析)面 马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成(图7 Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体)。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改变如图7Fe-25Ni-0.3V-0.3C钢中的马氏体及其周围的奥氏体中由{135}变为{224}面。图7Fe-25Ni-0.3V-0.3C钢中的马......>>

问题五:马氏体组织的形态有哪些 最常见的是板条马氏体和片状马氏体。
板条马氏体:一般形成于低、中碳钢中(C%≤0.5),亚结构为位错,所以也叫位错马氏体。显微镜下观察其特征为由大致平行的各个半条束群构成。
片状马氏体:主要出现在中、高碳钢淬火组织中。亚结构为孪晶,所以也叫孪晶马氏体,显微特征为针片状。
除了上述两大类马氏体外,还有蝶状、箭状等特殊形态的马氏体

问题六:马氏体与奥氏体有什么不同? 马氏体和奥氏体都是钢在热处理过程中的一种组织形态,奥氏体的代号:γ ,面心立方结构,碳在γ-Fe中的间隙固溶体,最大溶碳量2.11%(1148°C)。共析成分的奥氏体快速(冷速大于淬火临界冷速)过冷到马氏体转变区内,发生马氏体转变,在马氏体转变过程中,只发生铁的晶格重构,铁和碳原子不发生扩散,不产生浓度变化,仅由面心立方晶格变成体心立方晶格,故马氏体与奥氏体具有同样的化学成分。 但是,由于马氏体是碳在α-Fe中的过饱和固溶体,故强度和硬度很高。 马氏体可以是钢在正常室温下的一种组织形态,但奥氏体只是加热过程中的一种组织形态,以不同的速度降温,可得到不同的组织形态,并不是只有马氏体一种。马氏体有硬度,而奥氏体因为是热态下的形态,所以奥氏体没有硬度。
满意请采纳

问题七:马氏体的形成性能 马氏体由奥氏体急速冷却(淬火)形成,这种情况下奥氏体中固溶的碳原子没有时间扩散出晶胞。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变结束。马氏体还可以在压力作用下形成,这种方法通常用在硬化陶瓷上(氧化钇、氧化锆)和特殊的钢种(高强度、高延展性的钢)。因此,马氏体转变可以通过热量和压力两种方法进行。马氏体和奥氏体的不同在于,马氏体是体心正方结构,奥氏体是面心立方结构。奥氏体向马氏体转变仅需很少的能量,因为这种转变是无扩散位移型的,仅仅是迅速和微小的原子重排。马氏体的密度低于奥氏体,所以转变后体积会膨胀。相对于转变带来的体积改变,这种变化引起的切应力、拉应力更需要重视。马氏体在Fe-C相图中没有出现,因为它不是一种平衡组织。平衡组织的形成需要很慢的冷却速度和足够时间的扩散,而马氏体是在非常快的冷却速度下形成的。由于化学反应(向平衡态转变)温度高时会加快,马氏体在加热情况下很容易分解。这个过程叫做回火。在某些合金中,加入合金元素会减少这种马氏体分解。比如,加入合金元素钨,形成碳化物强化机体。由于淬火过程难以控制,很多淬火工艺通过淬火后获得过量的马氏体,然后通过回火去减少马氏体含量,直到获得合适的组织,从而达到性能要求。马氏体太多将使钢变脆,马氏体太少会使钢变软。性能众所周知,马氏体是强化钢件的重要手段,而且一般认为,马氏体是一种硬而脆的组织,尤其是高碳片状马氏体。要想提高淬火钢的塑性和韧性,必须用提高回火温度的方法,牺牲部分强度而换取韧性,就是说强度和塑性很难兼得。但是近年来的研究工作表明,这种观点只是适用于片状马氏体,而板条状马氏体不是这样,板条状马氏体不但具有很高的强度而且具有良好的塑性和韧性,同时还具有低的脆性转变温度,其缺口敏感性和过载敏感性都较低。马氏体的硬度和强度钢中马氏体机械性能的显著特点是具有高硬度和高强度。马氏体的硬度主要取决于马氏体的含碳质量分数。马氏体的硬度随质量分数的增加而升高,当含碳质量分数达到0.6%时,淬火钢硬度接近最大值,含碳质量分数进一步增加,虽然马氏体的硬度会有所提高,但由于残余奥氏体数量增加,反而使钢的硬度有所下降。合金元素对钢的硬度关系不大,但可以提高其强度。  马氏体具有高硬度和高强度的原因是多方面的,其中主要包括固溶强化、相变强化、时效强化以及晶界强化等。  (1)固溶强化。首先是碳对马氏体的固溶强化。过饱的间隙原子碳在a相晶格中造成晶格的正方畸变,形成一个强烈的应力场。该应力场与位错发生强烈的交换作用,阻碍位错的运动从而提高马氏体的硬度和强度。  (2)相变强化。其次是相变强化。马氏体转变时,在晶格内造成晶格缺陷密度很高的亚结构,如板条马氏体中高密度的位错、片状马氏体中的孪晶等,这些缺陷都阻碍位错的运动,使得马氏体强化。这就是所谓的相变强化。实验证明,无碳马氏体的屈服强度约为284Mpa,此值与形变强化铁素体的屈服强度很接近,而退火状态铁素体的屈服强度仅为98~137Mpa,这就说明相变强化使屈服强度提高了147~186MPa  (3)时效强化。时效强化也是一个重要的强化因素。马氏体形成以后,由于一般钢的点Ms大都处在室温以上,因此在淬火过程中及在室温停留时,或在外力作用下,都会发生自回火。即碳原子和合金元素的原子向位错及其它晶体缺陷处扩散偏聚或碳化物的弥散析出,钉轧位错,使位错难以运动......>>
温馨提示:答案为网友推荐,仅供参考