如何通俗地理解「超分辨荧光显微技术」的技术原理?

如题所述

超分辨率荧光显微技术从原理上打破了原有的光学远场衍射极限对光学系统极限分辨率的限制,在荧光分子帮助下很容易超过光学分辨率的极限,达到纳米级分辨率。这一技术在生物、化学、医学等多个学科拥有广泛的应用。长期以来, 光学显微镜的分辨率都被认为是有极限的,它不可能超过二分之一个光波长度。然而,获奖的三位科学家打破了这一极限,使光学显微镜步入了纳米时代。利用超高分辨率显微镜,可以让科学家们在分子水平上对活体细胞进行研究,如观察活细胞内生物大分子与 细胞器微小结构以及细胞功能如何在分子水平表达及 编码,对于理解生命过程和疾病发生机理具有重要意义。2014年10月8日,2014年度诺贝尔化学奖揭晓,美国科学家 埃里克·白兹格、 威廉姆·艾斯科·莫尔纳尔和德国科学家 斯特凡·W·赫尔三人获得。官方称,该奖是为表彰他们在超分辨率荧光显微技术领域取得的成就。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-11-24

这个问题的答案比较简单:因为组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD、CMOS等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米。再结合眼球的构造,大致可以推断出,在距离眼睛 25 厘米的位置,我们能分辨物体上相距为 80 微米的两个点,换算成点阵密度就是大约 320 ppi,这也是苹果所谓“视网膜屏”分辨率的来历。如果要观察小于 80 微米的物体,比如细菌,就需要先将物体放大,再用眼睛或者相机观察。现代光学显微镜的构造其实非常简单,样品放置在物镜的焦点处,从样品上发射或散射的光经过物镜变成平行(准直)光,再经过一个结像透镜,然后会聚到相机的感光芯片上成像。按照前面的方法来推算,要区分物体上相距为 200 纳米的两个点,如果使用科研级相机,比如最近火起来的 sCMOS 相机(每个感光像素尺寸为 6.5 微米),只需要使用放大倍率为 65 倍的物镜就足够了。那么是否可以通过提高物镜的放大倍率来观察低于 200 纳米的物体,比如细胞里面微管呢?答案是不可以。组成视网膜的每一个感光细胞(视杆细胞和视锥细胞)、相机芯片上的每一个感光元件(CCD 、CMOS 等)都是有大小的。比如视网膜中央凹区域的视锥细胞直径平均约为 5 微米。而由于奈奎斯特-香农采样定理的限制,视网膜上能分清的两个相邻像点的距离是视锥细胞直径的两倍,即 10 微米。再结合眼球的构造,大致可以推断出,在距离眼睛 25 厘米的位置,我们能分辨物体上相距为 80 微米的两个点,换算成点阵密度就是大约 320 ppi ,这也是苹果所谓“视网膜屏”分辨率的来历。

第2个回答  2017-11-24

可见光波长范围是400~760 nm,如果使用更短波长的光,比如紫外线,理论上可以提高分辨率。但是紫外线能量高,易损伤样品,而且透射能力低,很难透过物镜。人们想到了使用高能电子束代替光束,比如 200 keV 的电子对应的的布罗意波长为 0.0025 纳米 (2.5 *  米)。虽然 NA 相对较小(约为10°),依然可以达到0.1 纳米的理论分辨率。这就是电子显微镜的基本原理。严格的说,电镜的分辨率依然限制在光学衍射极限的范围内。只不过这里的“光学”是“电子光学”。空气折射率为 1,水的折射率 1.33,玻璃折射率 1.58。目前主要的物镜都是玻璃材质,并在物镜与样品之间用与玻璃折射率一致的油来浸润,以提高分辨率。2012 年 Olympus 发布了一款 NA 高达 1.7 的物镜,光学部分使用蓝宝石(折射率约 1.76)制作,并搭配高折射率的镜油(目测成分应该是二碘甲烷 Methylene iodide)。也许在未来能发明比玻璃更好的材料,折射率更高、易于制作透镜、并且能找到高折射率的油,这样就能进一步提高分辨率。比如用钻石(折射率大约2.42)打造一枚土豪物镜,并找到同样折射率的透明液体,分辨率可以提高到 1.5 倍。当然,由于成本及工艺因素,目前尚不现实。