生物高分子材料有哪些

如题所述

生物高分子材料也称为生物医学材料,是指以医疗为目的,用于与生物组织接触以形成功能的无生命的材料。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、血液学等多种边缘学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗等)。

  由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。医用高分子材料的研究目前仍然处于经验和半经验阶段,还没有能够建立在分子设计的基础上,以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。

  合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。当前研究主要集中在外科置入件用高分子材料和生物降解及药物控制释放材料。

  外科置入件用高分子材料耐生物老化,作为长期置入材料具有良好的生物稳定性和物理、机械性能,易于加工成型,原料易得,便于消毒,受到人们普遍的关注,这类材料主要用于生物体软、硬组织修复体、人工器官、人工血管、接触镜、膜材、粘结剂和空腔制品诸方面。其特点是大多数不具有生物活性,与组织不易牢固结合,易导致毒性、过敏性等反应。不过作为承重的植入件用高分子材料还有许多方面的问题,目前研究主要集中在提高材料的对生物体的安全性;提高组织相容性和血液相容性;改善生物学性能,改善提高力学、机械、物理性能。在生物膜材料方面,属于线性高分子多糖结构的壳聚糖是甲壳质脱乙酰基的衍生物,无毒、无抗原性,可在生物体内自行降解.壳聚糖膜有促进创面愈合的作用,具有良好通透性,且含有游离氨基,能结合酸分子,是天然多糖中唯一的碱性多糖。因而具有许多特殊的物理化学性质和生理功能,在医学生物材料上可作为人工肾膜和人造皮肤。

  生物降解型医用高分子材料的主要成分是聚乳酸、聚乙烯醇及改性的天然多糖和蛋白质等,在临床上主要用于暂时执行替换组织和器官的功能,或作药物缓释系统和送达载体、可吸收性外科缝线、创伤敷料等。其特点是易降解,降解产物经代谢排出体外,对组织生长无影响,目前已成为医用高分子材料发展的方向。

  高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低了药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内以一定的速度在体内缓慢释放,而达到治疗某种疾病或调节生育的目的,比如高分子多肽或蛋白药物控制释放体系新的研究进展,为那些口服无效的多肽或蛋白药物的临床应用,展示了令人鼓舞的前景。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-11-11
生物高分子材料又称贮氢材料。某些过渡金属、合金或金属互化物在一定的温度和压力条件下能大量吸收或释放氢气,可作为生物高分子材料。[1
储氢材料既可作为氢的输送介质,还有一系列其它的用途,如作能量转换介质,分离氢,精制和分离氢的同位素,催化剂和敏感元件等。下面举出几个典型的应用实例。

氢制冷取暖设备
利用储氢材料在吸(放)氢时放(吸)热的特点,可制储藏能源的冷暖设备—化学热源泵,它热损失小并可由回收废热变成品质较高的热。化学热泵由两种不同的储氢材料制成的储气罐,以带开关的阀门相连。开启阀门时低温形成氢化物的高压罐A将释放氢,并为高温形成氢化物的低压罐B吸收而放出大量的热,可供取暖之用。B罐则可用廉价的热能加热,使释放的氢为A罐吸收、储存。加热B罐的热能,可以是夜间用电低谷的廉价电力,也可是工业用余热、废热和太阳能等。因此,储氢合金可制成`利用废热、余热和廉价能源和节能装置。如要制冷,则可用储氢材料吸热而达到降温的目的。

氢的分离精制
LaNi5等储氢合金对氢的选择吸收性极大,故可进行氢的分离精制。例如,将Ar、N2、CO2、CO、CH4和H2的混合气体与LaNi5、MnNi5多元素合金在加压下反应,氢被选择吸收,再加热使之解吸,便可获得精制的高纯氢气。利用上述材料1000L精制氢的纯度在99.9999%,产量是500ml/min。

此外,储氢材料还可进行能量变换驱动机器;在氢-空气燃料电池中得到应用;还可作合成氢的催化剂和进氢的分离和回收,等等。总之,储氢材料的应用领域是十分广阔的,且有不断扩大之势。
第2个回答  2020-11-11
1简介编辑
品 名:储氢材料
最有希望获实际应用的是LaNi5和FeTi,形成固体氢化物LaNi5H6和FeTiH1.95后,单位体积的储氢量可达88和101.2千克/米3,高于液氢的70.6千克/米3。一般是本身重量的1.3%~1.7%,相当于本身体积的1000倍以上(金属钯Pd吸氢能高达本身体积2800倍,但因物稀价昂,一般只用于制超纯氢而不用作储氢材料)。若解决了氢的储存和运输困难,则氢将是一种理想的、无污染的燃料。可用于运载工具和燃料电池等方面。因储氢材料在吸氢和放氢时有热效应和能量交换,这类材料也能储存热能或其他能量,所以也称为储能材料(energy storage materials)或能量转换材料(energy conversion materials)。[2]
2要求编辑
根据上述原理,通常可用降低温度促使金属氢化物的生成,再用加热便氢化物析氢储存并使用氢能。
理论上只要能有上述可逆反应的金属或合金者可作储氢材料,但在实用上,该类材料必须满足下列要求:(1)材料活性大,吸附氢量大并易于获得,价格低廉;
(2)材料用于吸附氢时,标准生成熔要小,用来储热时 要大;
(3)材料吸氢-解析的速率要大;氢的平衡压差要小;
(4)在使用过程中,材料破碎和粉化率低,力学性能不能有明显的降低。
目前的正在研究或接近实用的储氢材料有:Mg2Cu、TiFe、TiMn、TiCr2、LaNi5、ZrMn2和含稀土金属(La、Ce)的Ni、Zr、Al或Cr-Mn组成的多元合金。最近研制的Re –Nb-Zr-Al四元储氢合金,几乎可完全满足上述条件且不受氢气纯度的影响。
3应用编辑
储氢材料既可作为氢的输送介质,还有一系列其它的用途,如作能量转换介质,分离氢,精制和分离氢的同位素,催化剂和敏感元件等。下面举出几个典型的应用实例。
氢制冷取暖设备
利用储氢材料在吸(放)氢时放(吸)热的特点,可制储藏能源的冷暖设备—化学热源泵,它热损失小并可由回收废热变成品质较高的热。化学热泵由两种不同的储氢材料制成的储气罐,以带开关的阀门相连。开启阀门时低温形成氢化物的高压罐A将释放氢,并为高温形成氢化物的低压罐B吸收而放出大量的热,可供取暖之用。B罐则可用廉价的热能加热,使释放的氢为A罐吸收、储存。加热B罐的热能,可以是夜间用电低谷的廉价电力,也可是工业用余热、废热和太阳能等。因此,储氢合金可制成`利用废热、余热和廉价能源和节能装置。如要制冷,则可用储氢材料吸热而达到降温的目的。
氢的分离精制
LaNi5等储氢合金对氢的选择吸收性极大,故可进行氢的分离精制。例如,将Ar、N2、CO2、CO、CH4和H2的混合气体与LaNi5、MnNi5多元素合金在加压下反应,氢被选择吸收,再加热使之解吸,便可获得精制的高纯氢气。利用上述材料1000L精制氢的纯度在99.9999%,产量是500ml/min。
此外,储氢材料还可进行能量变换驱动机器;在氢-空气燃料电池中得到应用;还可作合成氢的催化剂和进氢的分离和回收,等等。总之,储氢材料的应用领域是十分广阔的,且有不断扩大之势。
第3个回答  2020-11-11
- 聚乳酸 -

化学结构:是一种热塑性脂肪族聚酯,由乳酸和丙交脂聚合而成。

性质:具有良好的加工性能,机械强度和良好的生物相容性和可降解性。可加工成纤维,膜状,片状,棒状等。其理化性能,降解速度与机械强度与结晶度有关,结晶度大,耐热性越高但降解速率下降。

应用:目前主要应用集中在可吸收手术缝合线,骨钉骨板领域,但在组织工程支架,药物和生长因子的控制释放领域也有其身影。

- 聚碳酸酯 -

化学结构:具有良好的可加工型和耐热性,但用于生物领域的常为其衍生物。其衍生物聚碳酸亚丙酯具有良好的生物相容性,可降解性和柔韧性,被应用于组织工程和药物控制领域。酪胺酸衍生的聚碳酸酯常被用于骨再生,神经,肌肉等组织工程,心血管支架及药物释放领域。

- 聚氨酯 -

指主链中含有胺基甲酸酯的高分子,由含有异氰酸酯官能团的化合物和含有活性氢原子的化合物聚合而成。

性质:力学和化学性质具有很大可调性,可修饰性同时具有良好的加工性,良好的生物相容性和可降解性。

应用:可作成不同形态:泡沫,纤维,膜状等应用于不同领域。比如可植入药物释放装置,组织工程支架,医用导管,假肢,血液相关医疗器械,心脏辅助器械以及骨科相关材料等。