污水处理中氨氮高怎么处理

如题所述

利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。

生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:节省25%氧供应量,降低能耗;减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;缩短反应历程,节省50%的反硝化池容积;降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。

全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8·1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。

温馨提示:答案为网友推荐,仅供参考