帮我归纳函数的知识

给我详细的这些知识点的资料 1.一次函数的概念和图像与性质 2.一次函数表达式的求法 3.一次函数与一元一次方程、一元一次不等式的关系 4.二次函数的图像及性质 像二次函数表达式中的a、b、c与函数图像的关系之类的(最好可以附图) 5.二次函数的表达式的求法 6.反比例函数的概念 7.反比例函数的图像和性质

早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. 当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. 18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三)函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. 后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由三角函数表示出,其中富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. 通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. 1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. 1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” 根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1 (x为有理数), 0 (x为无理数). 在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. 狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四)生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即ρ(x)= 0,x≠0, ∞,x=0. 且δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是P(0)=压力/接触面=1/0=∞. 其余点x≠0处,因无压力,故无压强,即 P(x)=0.另外,我们知道压强函数的积分等于压力,即 函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. 函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. 函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. 设集合X、Y,我们定义X与Y的积集X×Y为X×Y={(x,y)|x∈X,y∈Y}. 积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. 现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要. 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 基本初等内容 它有六种基本函数(初等基本表示): 函数名 正弦 余弦 正切 余切 正割 余割
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-08-13
函数知识归纳 1. 映射定义:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射 2. 若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射 3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素 4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备) 5.求函数的定义域常涉及到的依据为 ①分母不为0; ②偶次根式中被开方数不小于0; ③对数的真数大于0,底数大于零且不等于1; ④零指数幂的底数不等于零; ⑤实际问题要考虑实际意义 ⑥注意同一表达式中的两变量的取值范围是否相互影响 6.函数解析式的求法: ①定义法(拼凑): ②换元法: ③待定系数法 ④赋值法7.函数值域的求法: ①换元配方法。如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域。 ②判别式法。一个二次分式函数在自变量没有限制时就可以用判别式法去值域。其方法是将等式两边同乘以 dx2+ex+f移项整理成一个x的一元二次方程,方程有实数解则判别式大于等于零,得到一个关于y的不等式,解出y的范围就是函数的值域。 ③单调性法。如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域 8.函数单调性的证明方法: 第一步:设x1、x2是给定区间内的两个任意的值,且x1<x2; 第二步:作差(x1)-(x2),并对“差式”变形,主要采用的方法是“因式分解”或“配方法”; 第三步:判断差式(x1)-(x2)的正负号,从而证得其增减性 9、函数图像变换知识 ①平移变换: 形如:y=f(x+a):把函数y=f(x)的图象沿x轴方向向左或向右平移 |a|个单位,就得到y=f(x+a)的图象。 形如:y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到y=f(x)+a的图象 ②.对称变换 y=f(x)→ y=f(-x),关于y轴对称 y=f(x)→ y=-f(x) ,关于x轴对称 ③.翻折变换 y=f(x)→y=f|x|, (左折变换) 把y轴右边的图象保留,然后将y轴右边部分关于y轴对称 y=f(x)→y=|f(x)|(上折变换) 把x轴上方的图象保留,x轴下方的图象关于x轴对称 10.互为反函数的定义域与值域的关系:原函数的定义域和值域分别是反函数的值域及定义域; 11.求反函数的步骤: ①求反函数的定义域(即y=f(x)的值域) ②将x,y互换,得y=f–1 (x); ③将y=f(x)看成关于x的方程,解出x=f–1 (y),若有两解,要注意解的选择;。 12.互为反函数的图象间的关系:关于直线y=x对称; 13. 原函数与反函数的图象交点可在直线y=x上,也可是关于直线y=x对称的两点; 14.原函数与反函数具有相同的单调性; 15、在定义域上单调的函数才具有反函数;反之,并不成立(如y=1/x) 16.复合函数的定义域求法: ① 已知y=f(x)的定义域为A,求y=f[g(x)]的定义域时,可令g(x)A,求得x的取值范围即可。 ② 已知y=f[g(x)]的定义域为A,求y=f(x)的定义域时,可令xA,求得g(x)的函数值范围即可。 17.复合函数y=f[g(x)]的值域求法: 首先根据定义域求出u=g(x)的取值范围A, 在uA的情况下,求出y=f(u)的值域即可。 18 .复合函数内层函数与外层函数在定义域内单调性相同,则函数是增函数;单调性不同则函数是减函数。增增、减减为增;增减、减增才减 ①f(x)与f(x)+c (c为常数)具有相同的单调性 ②f(x)与c·f(x)当c>0是单调性相同,当c<0时具有相反的单调性 ③当f(x)恒不为0时,f(x)与1/f(x)具有相反的单调性 ④当f(x)恒为非负时,f(x)与 具有相同的单调性 ⑤当f(x)、g(x)都是增(减)函数时,f(x)+g(x)也是增(减)函数 设f(x),g(x)都是增(减)函数,则f(x)·g(x)当f (x),g(x)两者都恒大于0时也是增(减)函数,当两者都恒小于0时是减(增)函数 19.二次函数求最值问题:根据抛物线的对称轴与区间关系进行分析, Ⅰ、若顶点的横坐标在给定的区间上,则 a>0时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; a<0时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 a>0时:最小值在离对称轴近的端点处取得,最大值在离对称轴远的端点处取得; a<0时:最大值在离对称轴近的端点处取得,最小值在离对称轴远的端点处取得 20.一元二次方程实根分布问题解法: ①将方程的根视为开口向上的二次函数的图像与x轴交点的横坐标 ②从判别式、对称轴、区间端点函数值三方面分析限制条件 21.分式函数y=(ax+b)/(cx+d)的图像画法: ①确定定义域渐近线x=-d/c ②确定值域渐近线y=a/c ③根据y轴上的交点坐标确定曲线所在象限位置。 22.指数式运算法则 23.对数式运算法则: 24.指数函数的图像与底数关系: 在第一象限内,底数越大,图像(逆时针方向)越靠近y轴。 25.对数函数的图像与底数关系: 在第一象限内,底数越大,图像(顺时针方向)越靠近x轴。 26. 比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较 27.抽象函数的性质所对应的一些具体特殊函数模型: ①f(x1+x2)=f(x1)+f(x2)正比例函数f(x)=kx(k0) ②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2) y=ax; ③f(x1x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2) y=logax 28.如果f(a+x)=f(b-x)成立,则y=f(x)图像关于x=(a+b)/2对称; 特别是,f(x)=f(-x)成立,则y=f(x)图像关于y轴对称 29.a>f(x)恒成立a>f(x)的最大值 a<f(x)恒成立a<f(x)的最小值 30. a>f(x)有解a>f(x)的最小值 a<f(x) 有解a<f(x)的最大值