陈景润证明了1+2=3,这有什么意义

如题所述

陈景润证明了“1+2=3”,那真是一个天大的误会。其实,陈景润证明的是“哥德巴赫猜想”的一部分。

“1+2=3”是一个加法算式,它不需要证明,因为加法属于数学体系的一个公设,所谓公设就是一开始就假定它是对的,再以它为基础来构建整个数学体系。公设是不需要证明的,反过来说,如果公设本身是不成立的,那么以它为基础的整个数学体系就都是错的,这显然不可能。

陈景润于1966年提出了“1+2”(又称“陈氏定理”),并于1973年发表了该定理的详细证明,国内的大规模报道大约是从1978年左右开始的。

陈景润证明的“1+2”,意思就是:

在N=a+b中,

a必然是一个质数,(1)

b是最多两个质数的乘积 (2)

这个证明把布朗的方法又往前推了一步,而更重要的是,陈景润提出,布朗的这个思路到这里应该就走到头了,按照这个思路走下去,应该证明不了“1+1”。

事实上,从陈景润证明“1+2”到现在已经过去了40多年,依然没有人能够证明“1+1”,也许陈景润说的对,布朗的这条路也就到此为止,我们还需要借助其他的方法才能最终证明哥德巴赫猜想。

扩展资料

哥德巴赫猜想,是说有一个叫哥德巴赫的人,跟当时的数学大神欧拉写信的时候,说自己琢磨出一个猜想,这个猜想当时有好几种说法,现在一般这么说:

任一大于2的偶数,

都可表示成两个质数之和。

比如10=5+5,100=3+97……,当然,正整数的个数是无限的,怎么试都试不完,所以数学家们就要想办法证明它。20世纪初,挪威数学家布朗用筛法部分证明了哥德巴赫猜想,他证明的命题是这样的:

所有充分大的偶数

都可表示成两个数之和,

且这两个数中每一个数

所包含的质因数不超过9个。

假设一个偶数N可以表示成两个数a和b之和,也就是N=a+b,其中a和b都是n个质数的乘积,这里的n≤9。布朗把这个命题简写为“9+9”,而且他提出,对于他这个命题,哥德巴赫猜想就相当于“1+1”。

因此,如果有人能按布朗的思路证明到“1+1”,就相当于证明了哥德巴赫猜想。布朗的方法给数学家们点亮了一盏明灯,于是一帮人就按照这个思路不断改进,一路证明了“7+7”、“6+6”……直到1965年证明到了“1+3”,陈景润就是在这个基础上,证明了“1+2”。

温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2017-11-23
陈景润没有证明1+2=3,也没有任何数学家去证明1+2=3
所谓陈景润证明了1+2=3,是对哥德巴赫猜想简略写法的一种误解。
哥德巴赫猜想是说,一个足够大的偶数(有的说是大于4,有点说是大于6,也有的说是大于8),都可以分解成两个质数的相加,如10=3+7;12=5+7;20=3+17等等
这个猜想就被人简略的写成1+1,注意,是1+1,而不是1+1=2,和算数中的1+1=2也没任何关系。
这个猜测至今还没人证明出来。
陈景润证明出了这样的分解方式,任何足够大的偶数,都能分解成一个质数和两个质数的乘积相加;比方说20=5+3×5;30=3+2×5等等
这个证明就被简写为1+2,而不是1+2=3,同样的,这个1+2和算数中的1+2=3也没有任何关系。
但是因为这个简写的缘故。不少人以为陈景润证明了算数中的1+2=3,觉得这需要证明吗?这能证明吗?其实这都是误解。本回答被网友采纳
第2个回答  2020-11-07
第3个回答  2019-09-06

陈景润证明的是1+2,而不是1+2=3

哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。如10=3+7;12=5+7;20=3+17等等

这个猜想简略地写成1+1

今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”。

陈景润在此基础上证明出:任何足够大的偶数,都能分解成一个质数和两个质数的乘积相加,如:20=5+3×5;30=3+2×5等等

扩展资料:

哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。

但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。

 因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。(n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和)欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。

今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。

今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。

华罗庚是中国最早从事哥德巴赫猜想的数学家。1936~1938年,他赴英留学,师从哈代研究数论,并开始研究哥德巴赫猜想,验证了对于几乎所有的偶数猜想。

1950年,华罗庚从美国回国,在中科院数学研究所组织数论研究讨论班,选择哥德巴赫猜想作为讨论的主题。参加讨论班的学生,例如王元、潘承洞和陈景润等在哥德巴赫猜想的证明上取得了相当好的成绩。

1956年,王元证明了“3+4”;同年,原苏联数学家阿·维诺格拉朵夫证明了“3+3”;1957年,王元又证明了“2+3”;潘承洞于1962年证明了“1+5”;1963年,潘承洞、巴尔巴恩与王元又都证明了“1+4”;1966年,陈景润在对筛法作了新的重要改进后,证明了“1+2”。

哥德巴赫猜想证明的困难在于,任何能找到的素数,在以下式中都是不成立的。2*3*5*7*。。。。。。*PN*P=PN+(2*3*5*7*。。。。。。*P-1)*PN前面的偶数减去任何一个素数PN的差必是合数。

参考资料来源:百度百科-哥德巴赫猜想