voc废气燃烧处理的原理是什么

如题所述

燃烧处理法又称为热氧化法,主要分为直接热氧化、催化热氧化和蓄热热氧化,VOC大多数是由碳、氢、氧等元素构成的有机化合物,燃烧法是在300~900℃的高温下,使VOC燃烧分解为二氧化碳和水。

燃烧法处理技术具有处理量大、效率高、节能环保、易维护和适用于各种VOC的优点,是目前化工、涂装等行业中最常用的VOC处理方法。

直接热氧化处理技术

直接热氧化处理技术是将VOC作为燃料直接燃烧的处理方法,适用于VOC浓度和热值均较高的废气。当废气中VOC浓度较低不满足直接热氧化条件时,可以设置转轮浓缩等VOC浓缩装置,将废气浓缩后再进行处理,并适当补充燃料气。

催化热氧化处理技术

催化热氧化处理技术是一种气-固相催化反应,催化剂的作用是降低反应的活化能,显著降低反应温度,并使反应物富集到催化剂表面提高反应速率。如表1所示,与直接热氧化相比,催化热氧化反应温度低,能耗低,可以有效降低甚至消除NOx生成。

催化热氧化法需要选择合适的催化剂,催化剂根据活性成分不同可分为贵金属催化剂、过渡金属氧化物催化剂和复氧化物催化剂。贵金属催化剂对烃类及其衍生物氧化反应催化活性高、使用寿命长、易于回收,但价格昂贵、耐中毒性差,常用的贵金属催化剂有Pt、Pd、Ru催化剂(如Pt-Al2O3催化剂)。过渡金属氧化物催化剂对烃类和CO氧化反应均有高催化活性,且成本较低,可一定程度取代贵金属催化剂,常用的过渡金属氧化物催化剂有MnOx和CuOx等催化剂。复氧化物催化剂存在结构和电子调变的相互作用,活性比一般的单一氧化物催化剂要高。复氧化物催化剂主要分为钙钛矿型和尖晶石型,钙钛矿型的分子通式为ABO3(如LaMnO2),A和B形成交替立体结构,表面晶格氧提供高活性的氧化中心;尖晶石型的分子通式为AB2X4(如CuMn2O4),具有极好的深度氧化催化活性,可以实现250℃低温催化燃烧。

蓄热热氧化处理技术

蓄热热氧化处理技术是通过蓄热陶瓷或其他高密度惰性材料床层从处理后气体中吸收并储存热量,再将热量释放给入口的低温废气,而不是采用管壳式换热器,蓄热陶瓷使用寿命较长,可达10a以上。典型的蓄热热氧化处理技术有二室蓄热式热氧化炉工艺和三室蓄热式热氧化炉工艺,都是通过切换蓄热室来实现蓄热陶瓷的吸热和放热。

二室蓄热式热氧化炉工艺如图3所示,炉体由燃烧室和2个蓄热室组成,蓄热室内填充有蓄热陶瓷床层。废气经废气入口管路从1号蓄热室底部进入,通过蓄热陶瓷预加热后进入到炉体上部的燃烧室,在燃烧室内进一步加热到800℃以上,停留一段时间充分氧化后,通过2号蓄热室内的蓄热陶瓷从2号蓄热室底部排出,并由烟囱排大气。此时,2号蓄热室内的蓄热陶瓷完成蓄热,通过废气入口管路上阀门的切换,废气在下一个处理过程从2号蓄热室进入并从1号蓄热室排出。通过切换蓄热室,蓄热陶瓷中的热量被充分利用。二室蓄热式热氧化炉工艺处理效率大于等于92%,热回收率大于90%,蓄热室切换时会有一定管路压力波动并存在交叉污染。

温馨提示:答案为网友推荐,仅供参考
相似回答