当前凝聚态物理(理论以及实验)有哪些研究热点和难题?

如题所述

从事凝聚态实验方面的研究,主要是铁电和多铁材料方面的研究,但是这已经不是热点了,我来简单列下我认为实验方面现在的研究热点吧。1. 最近及其火热的trihalide perovskite. 不管是理论方面还是实验方面研究的论文发表数目都是指数级别的增长。最新一期的science上面,居然有两篇是实验方面的Halide perovskite, 即将发表的一期science上面也有一篇(从science express可以看到)。Perovsikite来源于最原始的氧化物 ABO3 结构,而在新的trihalide perovskite中,人们用Cl, I, F, 代替了氧位。A位和B位也可以做很多替换,甚至A位可以加入具有极化性质的化学分子. 这一系列的材料最新的特征是可以作为solar cell的新体系的材料,很多科研都是着重于他们的光伏性质。但是他也是perovskite的一种,所以很多perovskite具有的性质都还没有研究清楚(相信很快会有成果出来)。2. Graphene 就不用多说了吧超级大热点基本每一个有凝聚态实验的物理系都会有专门的组在做这个。当然具体的问题是什么我也不是很了解啦,可以参考Graphene3. Topological insulator (拓扑绝缘体),这也是超级大热点,由这个引出的各种新现象比如说上了新闻联播的量子反常霍尔效应,由清华大学薛其坤教授领导的小组做出来的science级别的文章。当然这个拓扑绝缘体养活的不光是拓扑绝缘体本身,还有很多基于拓扑绝缘体的heterostructure,比如说Bi2Se3/NbSe2,以及各种interface的新现象。同样,有凝聚态实验的物理系,都会有专门负责用MBE生长topological insulator的组。可以看到2014年这个热点有多热,属于瞬间爆发的类型,而且2015年这才刚开始,就已经快赶上2014年之前任意一年最高的发表或者引用数量了。这个是我博士期间研究的课题,比较了解,可以多写一点东西,我自己感觉还是比较热门的,但是可能只是因为我研究它所以觉得他热门。关于拓扑缺陷,最近非常热的就是Skyrmion, 尤其是Takura组同个Lorentz TEM 成功image skyrmion lattice之后,这方面理论和实验方面的研究就开始铺天盖地了。关于skyrmion,理论方面有很多尝试去manipulate 这种topological defects的建议,比如说thermal gradient 引起的dynamic( Phys. Rev. Lett. 111, 067203 (2013) ),还有其creation 和annilation的整个过程,据我了解暂时还没有任何的实验证据,但是我知道很多组在尝试用不同的手段去manipulate skyrmion了。(貌似有一篇Nature 子刊系列,说创造了磁单极子,也与skyrmion有关,具体细节不太清楚了,貌似知乎上之前有人详细分析过的,有机会可以来贴个链接)另外一种不是很火的拓扑缺陷,就是我研究的六角锰氧化物中的ferroelectric vortex,这个体系里面,已经实验证实了电场不能移动vortex,但是strain和strain gradient可以,而且已经有很成熟的理论支持。很有意思的connection是在skyrmion(magnetic)里需要thermal gradient,在ferroelectric vortex(electric)里需要strain gradient,这里面是不是有很深的物理在里面还不清楚,我也很想知道里面的答案。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-11-23

凝聚态物理是物理学之下的一个二级学科。研究领域包括固体物理、晶体物理、金属物理、半导体物理、电介质物理、磁学、固体光学性质、低温物理与超导电性、高压物理、稀土物理、液晶物理、非晶物理、低维物理(包括薄膜物理、表面与界面物理和高分子物理)、液体物理、微结构物理(包括介观物理与原子簇)、缺陷与相变物理、纳米材料和准晶等。汉语中"凝聚"一词是由"凝"字双音演化而来的。"凝"在东汉许慎的"说文解字"一书中同"冰",指的是水结成冰的过程。可见我们的祖先最初对凝聚现象的注意可能始于对水的观察,特别是水从液态到固态的现象。英语的condense来源于法语,后者又来源于拉丁文,指的是密度变大,从气或蒸汽变液体。看来西方人对凝聚现象的注意可能始于对气体的观察,特别是水汽从气态到液态的现象。这是很有意思的差别,大概与各自的古代自然生活环境和生活习惯有关。不过东西方二者原始意义的结合,恰恰就是今天凝聚态物理主要研究的对象-液态和固态。当然从科学的含义上来说,二者不是截然分开的。所以凝聚态物理还研究介于这二者之间的态。例如液晶等。液态和固态物质一般都是由量级为1023的极大数量微观粒子组成的非常复杂的系统。凝聚态物理正是从微观角度出发,研究这些相互作用多粒子系统组成的物质的结构、动力学过程及其与宏观物理性质之间关系的一门学科。众所周知,复杂多样的物质形态基本上分成三类:气态、液态和固态,在这三种物态中,凝聚态物理研究的对象就占了二个,这就决定了这门学科的每一步进展都与我们人类的生活休戚相关。从传统的各种金属、合金到新型的各种半导体、超导材料,从玻璃、陶瓷到各种聚合物和复合材料,从各种光学晶体到各种液晶材料等等;所有这些材料所涉及到的声、光、电、磁、热等特性都是建立在凝聚态物理研究的基础上的。凝聚态物理研究还直接为许多高科学技术本身提供了基础。当今正蓬勃发展着的微电子技术、激光技术、光电子技术和光纤通讯技术等等都密切联系着凝聚态物理的研究和发展。