核心支持库加载失败是怎么回事?

如题所述

wps核心支持库加载失败的原因如下:

1、文件访问去权限,请检查登录的账户在软件安装的硬盘是否有足够权限。

2、模板文件损坏,建议卸载后重新安装。

WPSOffice具有内存占用低、运行速度快、体积小巧、强大插件平台支持、免费提供海量在线存储空间及文档模板、支持阅读和输出PDF文件、全面兼容微软MicrosoftOffice格式(doc/docx/xls/xlsx/ppt/pptx等)独特优势。

扩展资料:

WPSOffice支持桌面和移动办公。且WPS移动版通过GooglePlay平台,已覆盖的50多个国家和地区,WPSforAndroid在应用排行榜上领先于微软及其他竞争对手,居同类应用之首。

由于WPS诞生于DOS流行的时代里DOS起初仅仅只是磁盘操作系统它所提供的只是底层磁盘与内存的资源管理和利用手段。用户的界面完全由应用软件开发商从最底层自行设计这一点与今天在视窗与麦金塔系统下开发是完全不同的。下拉式菜单在当时最为著名它为使用提供了便利。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2020-02-17
1、文件访问去权限。请检查你登陆的账户在软件安装的硬盘是否有足够权限。2、模板文件损坏。 建议卸载后重新安装,卸载时取消“保留用户配置文件”的勾选,安装时候右键单击安装程序选择“以管理员身份运行”试试。本回答被网友采纳
第2个回答  2022-03-14
明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

到底是怎样的一个bug,能让95%的Pytorch库中招,就连特斯拉AI总监深受困扰?
还别说,这个bug虽小,但有够“狡猾”的。
这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。
最主要的是,在代码能够跑通的情况下,它甚至还会影响模型的准确率!
除此之外,网友热议的另外一个点,竟然是:

而是它到底算不算一个bug?

这究竟是怎么一回事?
事情的起因是一位网友发现,在PyTorch中用NumPy来生成随机数时,受到数据预处理的限制,会多进程并行加载数据,但最后每个进程返回的随机数却是相同的。
他还举出例子证实了自己的说法。
如下是一个示例数据集,它会返回三个元素的随机向量。这里采用的批量大小分别为2,工作进程为4个。
然后神奇的事情发生了:每个进程返回的随机数都是一样的。
这个结果会着实让人有点一头雾水,就好像数学应用题求小明走一段路程需要花费多少时间,而你却算出来了负数。
发现了问题后,这位网友还在GitHub上下载了超过10万个PyTorch库,用同样的方法产生随机数。
结果更加令人震惊:居然有超过95%的库都受到这个问题的困扰!
这其中不乏PyTorch的官方教程和OpenAI的代码,连特斯拉AI总监Karpathy也承认自己“被坑过”!
但有一说一,这个bug想要解决也不难:只需要在每个epoch都重新设置seed,或者用python内置的随机数生成器就可以避免这个问题。
到底是不是bug?
如果这个问题已经可以解决,为什么还会引起如此大的讨论呢?
因为网友们的重点已经上升到了“哲学”层面:
这到底是不是一个bug?
在Reddit上有人认为:这不是一个bug。

虽然这个问题非常常见,但它并不算是一个bug,而是一个在调试时不可以忽略的点。

就是这个观点,激起了千层浪花,许多人都认为他忽略了问题的关键所在。

这不是产生伪随机数的问题,也不是numpy的问题,问题的核心是在于PyTorch中的DataLoader的实现

对于包含随机转换的数据加载pipeline,这意味着每个worker都将选择“相同”的转换。而现在NN中的许多数据加载pipeline,都使用某种类型的随机转换来进行数据增强,所以不重新初始化可能是一个预设。

另一位网友也表示这个bug其实是在预设程序下运行才出现的,应该向更多用户指出来。
并且95%以上的Pytorch库受此困扰,也绝不是危言耸听。
有人就分享出了自己此前的惨痛经历:

我认识到这一点是之前跑了许多进程来创建数据集时,然而发现其中一半的数据是重复的,之后花了很长的时间才发现哪里出了问题。

也有用户补充说,如果 95% 以上的用户使用时出现错误,那么代码就是错的。

顺便一提,这提供了Karpathy定律的另一个例子:即使你搞砸了一些非常基本代码,“neural nets want to work”。

你有踩过PyTorch的坑吗?
如上的bug并不是偶然,随着用PyTorch的人越来越多,被发现的bug也就越来越多,某乎上还有PyTorch的坑之总结,被浏览量高达49w。
其中从向量、函数到model.train(),无论是真bug还是自己出了bug,大家的血泪史还真的是各有千秋。
所以,关于PyTorch你可以分享的经验血泪史吗?
欢迎评论区留言讨论~
参考链接:
[1]https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
[2]https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
[3]https://www.zhihu.com/question/67209417/answer/866488638
— 完 —
第3个回答  2022-03-11
明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

到底是怎样的一个bug,能让95%的Pytorch库中招,就连特斯拉AI总监深受困扰?
还别说,这个bug虽小,但有够“狡猾”的。
这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。
最主要的是,在代码能够跑通的情况下,它甚至还会影响模型的准确率!
除此之外,网友热议的另外一个点,竟然是:

而是它到底算不算一个bug?

这究竟是怎么一回事?
事情的起因是一位网友发现,在PyTorch中用NumPy来生成随机数时,受到数据预处理的限制,会多进程并行加载数据,但最后每个进程返回的随机数却是相同的。
他还举出例子证实了自己的说法。
如下是一个示例数据集,它会返回三个元素的随机向量。这里采用的批量大小分别为2,工作进程为4个。
然后神奇的事情发生了:每个进程返回的随机数都是一样的。
这个结果会着实让人有点一头雾水,就好像数学应用题求小明走一段路程需要花费多少时间,而你却算出来了负数。
发现了问题后,这位网友还在GitHub上下载了超过10万个PyTorch库,用同样的方法产生随机数。
结果更加令人震惊:居然有超过95%的库都受到这个问题的困扰!
这其中不乏PyTorch的官方教程和OpenAI的代码,连特斯拉AI总监Karpathy也承认自己“被坑过”!
但有一说一,这个bug想要解决也不难:只需要在每个epoch都重新设置seed,或者用python内置的随机数生成器就可以避免这个问题。
到底是不是bug?
如果这个问题已经可以解决,为什么还会引起如此大的讨论呢?
因为网友们的重点已经上升到了“哲学”层面:
这到底是不是一个bug?
在Reddit上有人认为:这不是一个bug。

虽然这个问题非常常见,但它并不算是一个bug,而是一个在调试时不可以忽略的点。

就是这个观点,激起了千层浪花,许多人都认为他忽略了问题的关键所在。

这不是产生伪随机数的问题,也不是numpy的问题,问题的核心是在于PyTorch中的DataLoader的实现

对于包含随机转换的数据加载pipeline,这意味着每个worker都将选择“相同”的转换。而现在NN中的许多数据加载pipeline,都使用某种类型的随机转换来进行数据增强,所以不重新初始化可能是一个预设。

另一位网友也表示这个bug其实是在预设程序下运行才出现的,应该向更多用户指出来。
并且95%以上的Pytorch库受此困扰,也绝不是危言耸听。
有人就分享出了自己此前的惨痛经历:

我认识到这一点是之前跑了许多进程来创建数据集时,然而发现其中一半的数据是重复的,之后花了很长的时间才发现哪里出了问题。

也有用户补充说,如果 95% 以上的用户使用时出现错误,那么代码就是错的。

顺便一提,这提供了Karpathy定律的另一个例子:即使你搞砸了一些非常基本代码,“neural nets want to work”。

你有踩过PyTorch的坑吗?
如上的bug并不是偶然,随着用PyTorch的人越来越多,被发现的bug也就越来越多,某乎上还有PyTorch的坑之总结,被浏览量高达49w。
其中从向量、函数到model.train(),无论是真bug还是自己出了bug,大家的血泪史还真的是各有千秋。
所以,关于PyTorch你可以分享的经验血泪史吗?
欢迎评论区留言讨论~
参考链接:
[1]https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
[2]https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
[3]https://www.zhihu.com/question/67209417/answer/866488638
— 完 —
第4个回答  2022-03-11
明敏 发自 凹非寺
量子位 报道 | 公众号 QbitAI

到底是怎样的一个bug,能让95%的Pytorch库中招,就连特斯拉AI总监深受困扰?
还别说,这个bug虽小,但有够“狡猾”的。
这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。
最主要的是,在代码能够跑通的情况下,它甚至还会影响模型的准确率!
除此之外,网友热议的另外一个点,竟然是:

而是它到底算不算一个bug?

这究竟是怎么一回事?
事情的起因是一位网友发现,在PyTorch中用NumPy来生成随机数时,受到数据预处理的限制,会多进程并行加载数据,但最后每个进程返回的随机数却是相同的。
他还举出例子证实了自己的说法。
如下是一个示例数据集,它会返回三个元素的随机向量。这里采用的批量大小分别为2,工作进程为4个。
然后神奇的事情发生了:每个进程返回的随机数都是一样的。
这个结果会着实让人有点一头雾水,就好像数学应用题求小明走一段路程需要花费多少时间,而你却算出来了负数。
发现了问题后,这位网友还在GitHub上下载了超过10万个PyTorch库,用同样的方法产生随机数。
结果更加令人震惊:居然有超过95%的库都受到这个问题的困扰!
这其中不乏PyTorch的官方教程和OpenAI的代码,连特斯拉AI总监Karpathy也承认自己“被坑过”!
但有一说一,这个bug想要解决也不难:只需要在每个epoch都重新设置seed,或者用python内置的随机数生成器就可以避免这个问题。
到底是不是bug?
如果这个问题已经可以解决,为什么还会引起如此大的讨论呢?
因为网友们的重点已经上升到了“哲学”层面:
这到底是不是一个bug?
在Reddit上有人认为:这不是一个bug。

虽然这个问题非常常见,但它并不算是一个bug,而是一个在调试时不可以忽略的点。

就是这个观点,激起了千层浪花,许多人都认为他忽略了问题的关键所在。

这不是产生伪随机数的问题,也不是numpy的问题,问题的核心是在于PyTorch中的DataLoader的实现

对于包含随机转换的数据加载pipeline,这意味着每个worker都将选择“相同”的转换。而现在NN中的许多数据加载pipeline,都使用某种类型的随机转换来进行数据增强,所以不重新初始化可能是一个预设。

另一位网友也表示这个bug其实是在预设程序下运行才出现的,应该向更多用户指出来。
并且95%以上的Pytorch库受此困扰,也绝不是危言耸听。
有人就分享出了自己此前的惨痛经历:

我认识到这一点是之前跑了许多进程来创建数据集时,然而发现其中一半的数据是重复的,之后花了很长的时间才发现哪里出了问题。

也有用户补充说,如果 95% 以上的用户使用时出现错误,那么代码就是错的。

顺便一提,这提供了Karpathy定律的另一个例子:即使你搞砸了一些非常基本代码,“neural nets want to work”。

你有踩过PyTorch的坑吗?
如上的bug并不是偶然,随着用PyTorch的人越来越多,被发现的bug也就越来越多,某乎上还有PyTorch的坑之总结,被浏览量高达49w。
其中从向量、函数到model.train(),无论是真bug还是自己出了bug,大家的血泪史还真的是各有千秋。
所以,关于PyTorch你可以分享的经验血泪史吗?
欢迎评论区留言讨论~
参考链接:
[1]https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-projects/
[2]https://www.reddit.com/r/MachineLearning/comments/mocpgj/p_using_pytorch_numpy_a_bug_that_plagues/
[3]https://www.zhihu.com/question/67209417/answer/866488638
— 完 —