关于圆周率的小知识50字

如题所述

1. 有关圆周率的小知识
有关圆周率的小知识 1.关于 圆周率的小知识
圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数。它定义为圆形之周长与直径之比。它也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学上,π可以严格地定义为满足sin(x) = 0的最小正实数x。

很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.

公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π

会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.

公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<;π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.

15世纪, *** 的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.

1579年法国韦达发现了关系式 。首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.

1650年瓦里斯把π表示成元穷乘积的形式

稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.

1671年,苏格兰数学家格列哥里发现了

1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.

1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为

1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.

1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.

本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.

人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……
2.谁有有关圆周率的小知识
自古以来,不知有多少数学家为求圆周率π的数值绞尽了脑汁。

魏晋时,我国数学家刘徽用割圆术计算出圆的内接正192边形的面积,得到圆周率值为3.14。后来,他又计算出圆内接正3072边形的面积,得到更精确的圆周率值为3.1416。

我国南北朝的科学家祖冲之精密地失算出圆周率的值在3.1415926和3.1415927之间。微积分理论建立以后,圆周率的计算进入了一个新的境界。

到1947后,电子计算机问世前夕,圆周率的值已计算到了小数点后808位。电子计算机发明以后,用电子计算机计算的圆周率小数位数以惊人的速度增长。

1989后,圆周率的值已经计算到小数点后10亿多位。希望采纳。
3.谁有有关圆周率的小知识
自古以来,不知有多少数学家为求圆周率π的数值绞尽了脑汁。魏晋时,我国数学家刘徽用割圆术计算出圆的内接正192边形的面积,得到圆周率值为3.14。后来,他又计算出圆内接正3072边形的面积,得到更精确的圆周率值为3.1416。我国南北朝的科学家祖冲之精密地失算出圆周率的值在3.1415926和3.1415927之间。微积分理论建立以后,圆周率的计算进入了一个新的境界。到1947后,电子计算机问世前夕,圆周率的值已计算到了小数点后808位。电子计算机发明以后,用电子计算机计算的圆周率小数位数以惊人的速度增长。1989后,圆周率的值已经计算到小数点后10亿多位。

希望采纳
4.有关圆周率的知识
很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今.

公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π

会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416.

公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<;π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜.

15世纪, *** 的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录.

1579年法国韦达发现了关系式 。首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式.

1650年瓦里斯把π表示成元穷乘积的形式

稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式.

1671年,苏格兰数学家格列哥里发现了

1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法.

1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为

1794年勒让德证明了π是无理数,即不可能用两个整数的比表示.

1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根.

本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字.

人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……
5.谁有有关圆周率的小知识
自古以来,不知有多少数学家为求圆周率π的数值绞尽了脑汁.魏晋时,我国数学家刘徽用割圆术计算出圆的内接正192边形的面积,得到圆周率值为3.14.后来,他又计算出圆内接正3072边形的面积,得到更精确的圆周率值为3.1416.我国南北朝的科学家祖冲之精密地失算出圆周率的值在3.1415926和3.1415927之间.微积分理论建立以后,圆周率的计算进入了一个新的境界.到1947后,电子计算机问世前夕,圆周率的值已计算到了小数点后808位.电子计算机发明以后,用电子计算机计算的圆周率小数位数以惊人的速度增长.1989后,圆周率的值已经计算到小数点后10亿多位.。
6.关于 圆周率的小知识
1、π(读作“派”)是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表示圆周率了。

2、第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<;π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

3、为什么要继续计算π?第一,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。第二,数学家把π算的那么长,是想研究π的小数是否有规律。比如,π值从第700100位小数起,连续出现7个3,即3333333,从第3204765位开始,又连续出现7个3。现在大家就会问,π只具备这样一种特殊性质吗?不是的。
7.告诉我关于“圆周率”的所有知识
圆周率是指平面上圆的周长与直径之比。用希腊字母 π (读"Pài")表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14)

编辑本段【圆周率的历史】

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≒3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<;π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。

南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。

*** 数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。

德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数,创下新的纪录。至今,最新纪录是小数点后12411亿位。

除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的“化圆为方”尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。
8.关于圆周率的知识有哪些
1777年法国科学家蒲丰提出的一种计算圆周率的方法——随机投针法,即著名的蒲丰投针问题。

这一方法的步骤是: 1) 取一张白纸,在上面画上许多条间距为d的平行线。 2) 取一根长度为l(l

布丰本人证明了,这个概率是 p=2l/(πd) π为圆周率 利用这个公式可以用概率的方法得到圆周率的近似值。下面是一些资料 实验者 年代 投掷次数 相交次数 圆周率估计值 沃尔夫 1850 5000 2531 3.1596 史密斯 1855 3204 1219 3.1554 德摩根 1680 600 383 3.137 福克斯 1884 1030 489 3.1595 拉泽里尼 1901 3408 1808 3.1415929 赖纳 1925 2520 859 3.1795 布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率论的发展起到一定的推动作用。

像投针实验一样,用通过概率实验所求的概率来估计我们感兴趣的一个量,这样的方法称为蒙特卡罗方法(Monte Carlo method)。蒙特卡罗方法是在第二次世界大战期间随着计算机的诞生而兴起和发展起来的。

这种方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。 法国数学家布丰(1707-1788)最早设计了投针试验。

并于1777年给出了针与平行线相交的概率的计算公式P=2L/πd(其中L是针的长度,d是平行线间的距离,π是圆周率)。 由于它与π有关,于是人们想到利用投针试验来估计圆周率的值。

此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关。 值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。

投针试验——计算π的最为稀奇的方法之一 计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·蒲丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的. 蒲丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值. 公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929——准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的。
9.圆周率的小资料
圆周率

圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米得 ,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形 开始,逐次加倍计算到正96边形,得到(3+(10/71)) <; π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或 阿基米得方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确 到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后 7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。 *** 数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

1579年法国数学家韦达给出π的第一个解析表达式

此后,无穷乘积式、无穷连分数、无穷级数等各种π 值表达式纷纷出现,π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗 格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队弹道研究实验室首 次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研 究人员用克雷-2型和IBM-VF型巨型电子计算机计算出 π值小数点后4.8亿位数,后又继续算到小数点后10.1 亿位数,创下新的纪录。

除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数 。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。
10.关于圆周率的知识
▲什么是圆周率? 圆周率是一个常数,是代表圆周和直径的比例。

它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。

▲什么是π? π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。

但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。 ▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。

他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。

亚洲 中国: 魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即「割圆术」),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。

虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。

印度: 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。

欧洲 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
温馨提示:答案为网友推荐,仅供参考